
BY

RYAN M. SWANSTROM

A dissertation submitted in partial fulfilment of the requirements for the

Doctor of Philosophy

Major in Computational Science and Statistics

South Dakota State University

2015

SCORING A SOFTWARE DEVELOPMENT ORGANIZATION

WITH A SINGLE NUMBER

Gary Hatfield, Ph.D.
Dissertation Advisor Date

Kurt Cogswell, Ph.D.
Head, Department of Mathematics and Statistics Date

Dean, Graduate School Date

ii

SCORING A SOFTWARE DEVELOPMENT ORGANIZATION

WITH A SINGLE NUMBER

This dissertation is approved as a creditable and independent investigation by a

candidate for the Doctor of Philosophy in Computational Science and Statistics degree

and is acceptable for meeting the dissertation requirements for this degree. Acceptance of

this does not imply that the conclusions reached by the candidates are necessarily the

conclusions of the major department.

iii

“What you have here is small data.”

Clay Campbell

“Every day, three times per second, we produce the equivalent of the amount of data that

the Library of Congress has in its entire print collection, right? But most of it is like cat

videos on YouTube or 13-year-olds exchanging text messages about the next Twilight

movie.”

Nate Silver

iv

ACKNOWLEDGEMENTS

I would like to acknowledge the generous support I received from my family.

Thank you to Emily for providing encouragement and the final push to get me to

eventually finish. Thank you to Ainsley, Porter, Trey, and Ryker for always providing a

smile.

Next, I would like to thank my advisor, Dr. Gary Hatfield, for the encouragement

and guidance along the way. Also, thank you to Clay, Jess, and Chris for helping me

formulate the initial idea.

Finally, I would like to thank my Mom for providing a final grammatical

proof-reading of the dissertation.

v

CONTENTS

ABBREVIATIONS . ix

LIST OF FIGURES . x

LIST OF TABLES . xi

ABSTRACT . xii

1 INTRODUCTION . 1

1.1 OVERVIEW . 1

1.2 TERMINOLOGY . 2

1.3 CMMI . 3

1.4 PREVIOUS SOFTWARE EVALUATION WORK 7

1.4.1 SEMAT . 9

1.4.2 SOFTWARE QUALITY . 10

1.4.3 SOFTWARE ANALYTICS 11

1.5 ORGANIZATION OF THE WORK 14

2 A SOFTWARE DEVELOPMENT ORGANIZATION 15

2.1 WHAT IS SOFTWARE? . 15

2.2 THE SOFTWARE DEVELOPMENT LIFE CYCLE 15

2.2.1 WATERFALL . 16

2.2.2 SPIRAL . 18

2.2.3 AGILE . 19

2.2.4 SDLC COMMONALITIES . 20

2.3 WHAT IS SOFTWARE ENGINEERING? 21

3 MEASURING AN SDO . 22

3.1 METRICS . 22

vi

3.2 INDICATORS . 23

3.2.1 RESULT INDICATORS (RI) FOR AN SDO 24

3.2.2 KEY RESULT INDICATOR (KRI) FOR AN SDO 25

3.2.3 PERFORMANCE INDICATOR (PI) FOR AN SDO 25

3.2.4 KEY PERFORMANCE INDICATOR (KPI) FOR AN SDO . 26

3.3 BALANCED SCORECARD . 28

3.4 PROJECT MANAGEMENT MEASUREMENT 29

3.5 A SIMPLER MEASUREMENT . 29

4 CUMULATIVE RESULT INDICATOR (CRI) 30

4.1 ELEMENTS OF CRI . 31

4.1.1 QUALITY . 32

4.1.2 AVAILABILITY . 36

4.1.3 SATISFACTION . 39

4.1.4 SCHEDULE . 44

4.1.5 REQUIREMENTS . 48

4.1.6 OVERALL CRI SCORE . 51

4.2 CORRELATIONS IN CRI . 51

4.3 SENSITIVITY OF CRI . 52

4.4 CRI COMPARED . 53

4.4.1 CRI VS. FOCUS AREAS OF SOFTWARE ANALYTICS . . 53

4.4.2 CRI VS. IMPORTANT QUESTIONS OF SOFTWARE ANA-

LYTICS . 54

4.4.3 CRI VS. BALANCED SCORECARD 55

4.4.4 CRI VS. PROJECT MANAGEMENT MEASUREMENT . . 56

5 SDLC ANALYTIC ENGINE . 56

5.1 DATABASE STRUCTURE . 57

vii

5.1.1 TABLES FOR RAW CRI DATA 57

5.1.2 INTERMEDIATE SCORE TABLES FOR CRI 58

5.1.3 FINAL SCORE TABLES FOR CRI 59

6 CASE STUDY: SCORING AN SDO OF A LARGE FINANCIAL INSTITUTION 61

6.1 QUALITY . 61

6.2 AVAILABILITY . 64

6.3 SCHEDULE . 65

6.4 REQUIREMENTS . 67

6.5 OVERALL . 69

6.6 SENSITIVITY AND CORRELATION 70

7 FUTURE WORK . 71

8 CONCLUSION . 74

APPENDIX . 76

A DETAILED STEPS OF THE SDLC . 76

B SDLC-AE SOURCE CODE . 77

B.1 SQL CODE - DATA TABLES . 77

B.2 SQL CODE - SCORE TABLES . 79

B.3 SQL CODE - FINAL SCORE TABLES 80

C CASE STUDY SOURCE CODE . 81

C.1 QUALITY HISTORICAL R CODE AND ANALYSIS 81

C.2 BAR CHART - R CODE . 84

C.3 QUALITY SCORES - R CODE . 85

C.4 AVAILABILITY SCORES - R CODE 85

C.5 SCHEDULE SCORES - R CODE . 86

viii

C.6 REQUIREMENTS SCORES - R CODE 88

C.6.1 REQUIREMENTS HISTOGRAM 88

C.6.2 REQUIREMENTS R CODE 88

C.7 OVERALL SCORES - R CODE . 89

D ADDITIONAL SDLC DATA NEEDS . 90

D.1 ESTIMATION . 90

D.2 REQUIREMENTS . 91

D.3 DEVELOPMENT . 92

D.4 TESTING . 92

D.5 IMPLEMENTATION . 93

D.6 MAINTENANCE (DEFECTS) . 93

REFERENCES . 95

ix

ABBREVIATIONS

CDF Cumulative Distribution Function

CEO Chief Executive Officer

CMMI Capability Maturity Model Integration

CRI Cumulative Result Indicator

IEEE Institute of Electrical and Electronics Engineers

KPI Key Performance Indicator

KRI Key Result Indicator

NOM Number of Methods

PI Performance Indicator

PROD Production

RI Result Indicator

SDLC Software Development Life Cycle

SDLC-AE SDLC Analytic Engine

SDO Software Development Organization

SEMAT Software Engineering Method and Theory

SIT Systems Integration Testing

SLOC Source Lines Of Code

SQL Structured Query Language

UAT User Acceptance Testing

x

LIST OF FIGURES

1 CHARACTERISTICS OF CMMI . 6

2 BENINGTON’S ORIGINAL DIAGRAM FOR PRODUCING LARGE

SOFTWARE SYSTEMS . 16

3 ROYCE’S VERSION OF THE WATERFALL MODEL 17

4 MODERN WATERFALL . 18

5 SPIRAL SDLC MODEL . 19

6 SDLC ANALYTIC ENGINE . 57

7 TABLES FOR RAW CRI DATA . 59

8 TABLES FOR INTERMEDIATE CRI SCORES 60

9 TABLES FOR FINAL CRI SCORES 60

10 QUALITY DATA PLOTS: DEPENDENT VS. INDEPENDENT VARI-

ABLES . 62

11 CRI QUALITY SCORES . 63

12 CRI AVAILABILITY SCORES . 65

13 SCHEDULE DATA HISTOGRAM WITH CAUCHY 66

14 CRI SCHEDULE SCORES . 67

15 CRI REQUIREMENTS SCORES . 68

16 CRI SCORES . 69

17 CRI SENSITIVITY ANALYSIS . 70

18 SCATTERPLOT MATRIX OF CRI ELEMENT SCORES 72

19 SDLC ANALYTIC ENGINE EXPANSION 73

20 QUALITY DIAGNOSTIC PLOTS 83

21 QUALITY PAIRS PLOT OF INDEPENDENT VARIABLES 84

22 REQUIREMENTS DATA HISTOGRAM (ACTUAL/SCHEDULED) 88

xi

LIST OF TABLES

1 INDICATORS . 24

2 RESULT INDICATORS FOR AN SDO 25

3 KEY RESULT INDICATORS FOR AN SDO 25

4 PERFORMANCE INDICATORS FOR AN SDO 26

5 KEY PERFORMANCE INDICATORS FOR AN SDO 27

6 SOFTWARE DEFECT SEVERITY LEVELS 32

7 QUALITY DATA NEEDED FOR CRI 33

8 DEFECT SEVERITY LEVEL WEIGHTING 34

9 AVAILABILITY DATA NEEDED FOR CRI 38

10 SAMPLE SURVEY FOR SATISFACTION 40

11 SATISFACTION DATA NEEDED FOR CRI 42

12 SCHEDULE DATA NEEDED FOR CRI 44

13 REQUIREMENTS DATA NEEDED FOR CRI 49

14 SOFTWARE ANALYTICS FOCUS AREAS AND CRI 54

15 IMPORTANT QUESTIONS FOR SOFTWARE ANALYTICS AND

CRI . 55

16 BALANCED SCORECARD VERSUS CRI 56

17 QUALITY DATA DESCRIPTIVE STATISTICS 62

18 AVAILABILITY DATA DESCRIPTIVE STATISTICS 64

19 SCHEDULE DATA DESCRIPTIVE STATISTICS 66

20 REQUIREMENTS DATA DESCRIPTIVE STATISTICS 68

21 CRI SENSITIVITY ANALYSIS . 71

xii

ABSTRACT

SCORING A SOFTWARE DEVELOPMENT ORGANIZATION

WITH A SINGLE NUMBER

RYAN M. SWANSTROM

2015

Nearly every large organization on Earth is involved in software development at

some level. Some organizations specialize in software development while other

organizations only participate in software development out of necessity. In both cases, the

performance of the software development matters. Organizations collect vast amounts of

data relating to software development. What do the organizations do with that data? That

is the problem. Many organizations fail to do anything meaningful with the data.

Another problem is knowing what data to collect. There are many options, but

certain data is more important than others. What data should a software development

organization collect?

This paper plans to answer that question and present a framework to gather the

right information and provide a score for an organization that produces software. The

score is not to be comparative between organizations, but to be comparative for a specific

organization over time.

The primary goal of this work is to provide a general framework for what a

software development organization should measure and how to report on those

measurements. The focus is providing a single number to represent the entire organization

and not just the development efforts. That single number is considered the Cumulative

Result Indicator (CRI) score. The secondary goal of this work is to provide a framework

for storing the necessary data.

1

1 INTRODUCTION

Software is becoming a vital part of companies. In 2011 Marc Andreessen, co-founder of

the venture capital firm Andreessen-Horowitz, famously claimed, “Software is Eating The

World” [1]. His argument was for the ever increasing importance of software in all

organizations big and small regardless of the industry. With this important declaration, the

production of new software is going to be critical. Just as important will be the effective

measurement of how this software is produced.

This dissertation provides a technique for a Software Development Organization

(SDO) to create a single number score which indicates the overall performance of the

organization. The score is based upon data collected for five key result indicators of an

SDO: quality, availability, satisfaction, schedule, and requirements. It is not meant to be

comparative between organizations, but to form a historical baseline for a specific

organization. The single number is targeted for upper-level management who need a quick

and simple strategy to evaluate the performance of the organization.

1.1 OVERVIEW

An SDO is no different than any other business or organization. There are: tasks to be

completed, goals to achieve (or miss), and measurements to be analyzed. One difficulty

with software development is the varied number and amount of measurements to be used.

It can be difficult to determine the correct activities to measure and the appropriate

mechanism to report the measure. This has led organizations to either collect too little

information or to collect too much information. Another problem is the inconsistency of

the reported measures. It is difficult to compare historical performance if the same

measurements are not consistent throughout the recent history of an organization.

SDOs need a framework to define what measurements should be tracked and how

those measurements should be reported. The Cumulative Result Indicator (CRI)

2

framework provides a solid foundation for a consistent evaluation. CRI analyzes the

historical performance of an SDO to create a baseline in order to provide a broad view of

the overall organization. It is common for software development organizations to measure

and focus solely on the source code being produced. However, an SDO does more than

just produce source code. There is documentation to be written, testcases to be created,

systems to be deployed, and decisions to be made. The framework provides an evaluation

of the overall SDO, not just the source code.

The framework will produce a single number score for each of the five result

indicators as well as a single overall score. It will be able to provide a quick evaluation of

the organization. The scores will enable performance to be consistently measured and

compared.

Other attempts at evaluating an SDO have been presented, but none produce a

single number score for the entire effort of the SDO. The following are attempts to

evaluate all or parts of software development.

1.2 TERMINOLOGY

Like any other business domain, the software engineering field has a number of specific

terms. Many of these terms will be used throughout the remainder of the document, so

definitions are provided.

Application - A software system or a collection of other applications

Release - A collection of projects being put in production on a specified date

Project - A body of work involving zero or more applications in preparation for a

release

SIT (Systems Integration Testing) - The initial step of testing after the development

phase of the SDLC. This is typically performed by members of the SDO. It is

validation that all the software components function together as expected.

3

UAT (User Acceptance Testing) - The final step of testing when a select few

members of the user group are invited to validate the software system. Once

validation has occurred for UAT, the software system is ready to proceed to

production

PROD (Production) - The software has been released to the final audience.

Defect - “A software defect is a bug or error that causes software to either stop

operating or to produce invalid or unacceptable results” as quoted from Capers

Jones [45]. It is important to mention that even though defects are typically found in

the computer code, a defect should not be isolated to just code. A poorly written

requirement or missed testcases can both be considered a defect. Other common

names for a defect are: bug, error, fault, or ticket.

1.3 CMMI

The Capability Maturity Model Integration (CMMI) is one of the most widely

acknowledged models for process improvement in software development. CMMI offers a

generic guideline and appraisal program for process improvement. It was created and is

administered by the Software Engineering Institute at Carnegie Mellon University [16].

While the CMMI is not specific to software development, it is often applied in software

development settings. CMMI certification is required for many United States Government

and Department of Defense contracts.

CMMI-Dev is a modification of the CMMI specific to the development activities

applied to products and services. The practices covered in CMMI-Dev include project

management, systems engineering, hardware engineering, process management, software

engineering, and other maintenance processes. Five maturity levels are specified, and they

include the existence of a number of process areas. The five maturity levels and the

process areas are specified as follows.

4

CMMI MATURITY LEVEL 1 - INITIAL A maturity level 1 organization

consists of an impromptu and chaotic process. While working products are still

produced, the results are often over budget and behind schedule. A level 1

organization will also have difficulties repeating a process with the same degree of

success. These organizations typically rely on the heroic efforts of certain

individuals.

CMMI MATURITY LEVEL 2 - MANAGED A maturity level 2

organization has a policy for planning and executing processes. The processes are

controlled, monitored, reviewed, and enforced. The practices are even maintained in

times of stress. The following process areas should be present at maturity level 2.

• Configuration Management (CM)

• Measurement and Analysis (MA)

• Project Monitoring and Control (PMC)

• Project Planning (PP)

• Process and Product Quality Assurance (PPQA)

• Requirements Management (REQM)

• Supplier Agreement Management (SAM)

CMMI MATURITY LEVEL 3 - DEFINED A maturity level 3

organization has well-understood processes that are described in standards, tools,

procedures, and methods. The organization has standard processes that are reviewed

and improved over time. The major differentiators between level 2 and level 3 is the

existence of standards and process descriptions. A level 2 organization will have

processes that are inconsistent across projects. A level 3 organization will tailor a

standard process for each project. Also, level 3 processes are described with much

5

more rigor. In addition to the process areas found in level 2, the following process

areas should be present at maturity level 3.

• Decision Analysis and Resolution (DAR)

• Integrated Project Management (IPM)

• Organizational Process Definition (OPD)

• Organizational Process Focus (OPF)

• Organizational Training (OT)

• Product Integration (PI)

• Requirements Development (RD)

• Risk Management (RSKM)

• Technical Solution (TS)

• Validation (VAL)

• Verification (VER)

CMMI MATURITY LEVEL 4 - QUANTITATIVELY MANAGED

A maturity level 4 organization has quantitative measures for quality and process

performance. The measures are based upon customer needs, end users, and process

implementers. The quality and process performance are understood mathematically

and managed throughout the life of a project. Level 4 is characterized by the

predictability of the process performance. In addition to the process areas found in

level 2 and 3, the following additional process areas should be present at maturity

level 4.

• Organizational Process Performance (OPP)

• Quantitative Project Management (QPM)

6

CMMI MATURITY LEVEL 5 - OPTIMIZING The final and pinnacle

level of CMMI maturity is level 5. A maturity level 5 organization continually

improves processes based upon quantitative measures. The major distinction from

level 4 is the constant focus on improving and managing organizational

performance. A maturity level 5 organization has well-documented standard

processes that are tracked and enforced as well as a focus on continual improvement

of the processes based upon quantitative measures. In addition to the process areas

of the previous maturity levels, maturity level 5 should contain the following

process areas.

• Causal Analysis and Resolution (CAR)

• Organizational Performance Management (OPM)

Figure 1: Characteristics of CMMI, image adapted from [30]

A visual description of the CMMI maturity levels can be seen in Figure 1. While

CMMI-Dev does provide an excellent framework for improving a process, it is entirely

focused on process improvement. It does not provide guidelines for evaluating the final

product. Also, it does not provide a specify mechanism for evaluating or scoring the

7

progression through the maturity levels. An indicator is still needed to quantify the overall

performance of an organization, not just the compliance to standard processes.

1.4 PREVIOUS SOFTWARE EVALUATION WORK

An example of scoring software development is presented by Jones [46]. The

methodology looks for the presence of various techniques used in software engineering.

The methodology provides a score based upon the productivity and quality increase of the

technique being evaluated. Points are positive or negative based upon the presence of

various techniques. Two examples of such techniques are: automated source code analysis

and continuous integration. The end result is a score in range [−10, 10]. While the result is

a single number score, it does not account for the entirety of the software development life

cycle.

Constructive Cost Model (COCOMO) is a software cost estimation model created

by Boehm [8]. It combines future project characteristics with historical project data to

create a regression model to estimate the cost of a software project. The original version

developed in 1981 was focused on mainframe and batch processing. An updated version,

named COCOMO II, was created by Boehm in 1995 to be more flexible for newer

development practices such as desktop development, off the shelf components, and code

reuse. COCOMO provides a nice algorithm for making decisions regarding building or

buying software products. It does not provide an algorithm to review and modify past

performance based upon estimates. COCOMO II can be a useful tool for estimating the

time and costs within an SDO, but it only provides an estimate and not an evaluation of

the actual performance.

Sextant is a visualization tool for Java source code [90]. Sextant provides a

graphical representation of the information related to a software system. The tool provides

the capability to provide custom rules which are specific to the domain or application.

However, Sextant only provides metrics and analysis of the software code. It provides no

8

information regarding the rest of the software development life cycle. Also, the primary

output of Sextant is visual graphs. While these graphs do provide useful information, they

do not provide a single number to determine the performance of the software.

Another promising research area is process mining [87]. As stated by Wil van der

Aalst [86], “The idea of process mining is to discover, monitor and improve real processes

(i.e., not assumed processes) by extracting knowledge from event logs readily available in

today’s systems.” Creating software involves many processes. Numerous logs of raw data

are collected. One application of process mining in the area of software development was

an algorithm and information for measuring a software engineering process from the

Software Configuration Management (SCM) [73]. The technique creates process models

to understand the process of developing software and code. It is less focused on the output

and results, but it is more focused on adherence to a specified process.

Process mining has also been applied to decision making regarding software

upgrades [88]. Historic and current logs can be processed and evaluated. Then small pilot

groups can be offered the upgrade, and the new logs will be processed and evaluated.

Thus, process mining can be beneficial for new software implementation. More research

needs to be done applying process mining to the other processes involved with software

development, such as other documentation, testing, and implementation.

Although process mining can be useful for analyzing software development data, it

has not yet been applied to the entirety of an SDO. It also does not focus on the results of

the organization. It focuses on process conformance, which can be very important, so it is

limited in the ability to evaluate the entire organization.

Much work has been done to determine metrics for source code, in fact entire

books have been written on the topic of software metrics [44], [68]. Yet, organizations still

struggle to measure the production of software. Little work exists for scoring the entire

SDO.

9

1.4.1 SEMAT

Software Engineering Method and Theory (SEMAT) is claiming to be the “new software

engineering” [41]. The authors rightfully claim that software engineering lacks an

underlying theoretical foundation found in other engineering disciplines. This lack of

theory has led software engineering to not be engineering, but rather a craft. The goal of

SEMAT is to merge the craftsmanship and engineering to provide a foundation for

software engineering. The primary initiative of SEMAT has been the creation of a kernel

for software engineering. The kernel is the minimal set of things common to all software

development endeavours. The three parts to the kernel are:

1. Measurement - There must exist a means to determine the health and progress of

an endeavour.

2. Categorization - The activities must progress through categories during an

endeavour.

3. Competencies - Specific competencies will be required for completing activities.

The kernel defines alphas, which are seven dimensions with specific states for

measuring progress. The seven dimensions are:

1. Opportunity

2. Stakeholders

3. Requirements

4. Software Systems

5. Work

6. Team

7. Way of Working

10

Although SEMAT is very promising, the development is not yet complete.

Adoption is limited so the technique has not been validated on many actual software

engineering endeavours. Although SEMAT does include a part for measurement of

progress, it does not specify how the measurement is to be performed.

1.4.2 SOFTWARE QUALITY

Software quality is one of the most well studied aspects of software development. Most of

the work focuses on either the problems with the software or the source code. Quality and

the number of problems with the software are inversely related, more problems means

lower quality. Quality is easy to measure, but that measurement is usually very software

specific. It is easy to find that some software has X number of problems, but it is nearly

impossible to determine whether the quality of that software is better or worse than some

other software with X defects. One piece of software can be larger1 or more complex.

Thus, finding a value for quality is easier than interpreting that value. No matter the

interpretation, the goal is to decrease the number of problems with the software. Top 10

lists have been created for techniques to remove problems from software [11]. A number

of different techniques or best practices for preventing defects have been proposed [27].

These are all strategies to identify or remove the problems before the software is

completed and released to users.

Another aspect of software quality is the complexity of the source code. More

complex code results in more maintenance efforts and more chances for problems. Some

numerical measures for the complexity of source code have been created. The most

common examples are McCabe [60] and Halstead [33]. However, the measures on source

code only explain part of the software development life cycle.

Another measurement of quality can be the cost per defect, also known as the cost

1Saying a piece of software is larger can be a rather arbitrary statement. It can mean the software
requires more computing time, has more lines of code, more documentation, more hours spent on
development, or some other arbitrary measure.

11

to fix a problem. As seen in [48], this measurement has problems because the lowest cost

per defect will occur on software with the most problems. Therefore, the lowest cost per

defect is actually the lowest quality as well. Due to this difficulty and others, a number of

other models have been created for evaluating the quality of software [63]. While all of

the models have merit in certain situations, the measures of quality must be combined

with other measures in order to provide an overall evaluation of an SDO.

1.4.3 SOFTWARE ANALYTICS

One area of research that is focusing on the evaluation of SDOs is software analytics.

Software analytics is less focused on evaluation and more so on all sorts of analysis of

software data. The earliest variants of software analytics were disguised as applications of

data mining techniques to software engineering data in the late 1990s [25], [31], [74].

Later the field began to emerge more heavily, but still remained primarily methods of data

mining applied to software engineering [32], [51], [83], [91]. The term software

intelligence was proposed for the field of study [35], but eventually the term software

analytics became the dominant term for referring to the field of study [13], [92].

The goal of software analytics is to extract insights from software artifacts to aide

practitioners in making better decisions regarding software development [93]. The three

main focus areas of software analytics are:

1. User Experience - How can the software enable the user to more easily or quickly

accomplish the task at hand?

2. Quality - How can the number of problems with the software be decreased?

3. Development Productivity - How can the processes or tools be modified to

increase the rate at which software is produced?

Later, Martin Shepperd in [34] identified three important questions that software

analytics must address:

12

1. “How much better is my model performing than a naive strategy, such as guessing

[. . .]?”

2. “How practically significant are the results?”

3. “How sensitive are the results to small changes in one or more of the inputs?”

These are three important questions that should be addressed when presenting any results

in software analytics. The research needs to demonstrate clear advantages for

practitioners. The work presented in this dissertation will address both the three main

focus areas and the three important questions of software analytics.

Lavazza, Morasca, Taibi, and Tosi focus specifically on the source code; analyzing

the complexity, size, and coupling [84]. They created a theoretical framework for dynamic

measurements instead of traditional static measures. Letier and Fitzgerald discuss how to

choose the correct tools and techniques to analyze software data [57]. A goal model is

produced that matches the data analysis methods with the goals of the software

stakeholders. The method does not focus specifically on analysis of the development of

software.

Software Development Analytics is a subfield of software analytics [62]. It focuses

specifically on the analytics of the development of software, however not the overall

performance of the software. Hassan points out in [34] that software analytics needs to go

beyond just the developers. Everyone and everything involved in the development of

software produces some data and that data can be meaningful. The insights from

non-developer data has the potential to yield important results as well. Software

development produces many valuable pieces of datum that can be analyzed [59]. Just a

few of the pieces of datum are: email communication, bugs, fixes, source code, version

control system histories, process information, and test data. Examples of this type of data

can be found in the PROMISE Data Repository [61].

All of these techniques are of no use if the correct data is not available. Therefore,

13

it is important to identify the information that is needed to properly perform software

development analytics. Unfortunately, there are vast amounts of information that need to

be collected to meet the analytic needs of developers and managers [14]. When the data

and tools exist, the analytics should help an organization with the following tasks.

• Evaluate a project

• Determine what is and is not working

• Manage risk

• Anticipate changes

• Evaluate prior decisions

In order to store the data, appropriate tools are needed. Microsoft is working on

developing some tools for the analysis of the development of software [19], [93].

Microsoft has developed StackMine, a postmortem tool for performance debugging, and

CODEMINE, a tool for collecting and analyzing software development process data. Both

tools provide analytical insight for various aspects of the software development process,

however neither tool covers all aspects of software development. These tools are currently

early in development and the adoption of the tools by practitioners is still unknown. One

of the reasons for the slow adoption of new tools is the inherent difficulty of producing

new tools for the software development process [80]. A tool that works fantastic for one

team might not automatically apply to another team. The people creating the tools need to

be acutely aware of the needs of the technical practitioners that will be using the tools.

Iqbal, Ureche, Hausenblas, and Tummarello introduced a methodology named

Linked Data Driven Software Development (LD2SD) which is a collection of various

software artifacts into linked data [40]. This is one of the original attempts to collect

software engineering data. The methodology links version control, discussion forums, and

14

issue tracking data. The result is web-scale integration of data, but the actual benefits are

still uncertain.

After the proper tools are in place to collect the necessary data on software

development and software analytics are being properly implemented, an obvious next step

is the application of gamification to software development. Gamification is “the process of

making activities more game-like” [89]. Some of the benefits of gamification are higher

productivity, added competition, and greater enjoyment. Prior attempts at gamification of

software development focus only on the computer programming phase [78]. Others focus

on defining a framework for gamification within the software development process [42].

There are even some indications that gamification might help increase software quality

[24]. While this dissertation will not focus on gamification, it is important to note that an

implementation of an evaluation technique for software development could be

implemented simultaneously with a gamification strategy. Both will require new

collections of data and new reporting.

Overall, there exist many attempts to evaluate portions of an SDO. None of the

attempts provide a single number score for the entirety of the organization. Most of the

techniques focus on specific portions of the software development life cycle, namely the

development portion. Plus, there are many tools that need to be created for software

analytics to provide all the value that it promises.

1.5 ORGANIZATION OF THE WORK

The remainder of this dissertation is divided into seven chapters. Chapter 2 provides an

overview of software, software development life cycles, software engineering, and

software development organizations. Chapter 3 introduces some existing techniques for

measuring an SDO. Chapter 4 then provides an explanation of the Cumulative Result

Indicator (CRI). It will present the essential elements for calculating the CRI, as well as

the formulas, framework, and data necessary to produce the CRI. Chapter 5 provides a

15

technological framework for storing the current and historical CRI values. Chapter 6

demonstrates how CRI can be implemented in a software development portion of a large

financial institution. Chapter 7 discusses some possible future directions for further

enhancements. Chapter 8 concludes the dissertation with a summary of the results.

2 A SOFTWARE DEVELOPMENT ORGANIZATION

A Software Development Organization (SDO) is any organization or subset of an

organization that is responsible for the creation, deployment, and maintenance of

software. Many times an SDO is a company that produces software. Other times, an SDO

is contained within the Information Technology department of a larger organization. Some

of the job roles with an SDO are: software engineer, system administrator, software

quality analyst, programmer, database administrator, and documentation specialist.

2.1 WHAT IS SOFTWARE?

Numerous definitions can be found for the term software. Software is more than just

computer programs. According to Ian Sommerville [79], “Software is not just the

programs but also all associated documentation and configuration data which is needed to

make these programs operate correctly.” This is the definition used for the remainder of

this dissertation.

2.2 THE SOFTWARE DEVELOPMENT LIFE CYCLE

The discipline of software engineering has created a workflow for developing software.

This workflow is called the Software Development Life Cycle (SDLC) . SDLC can be

defined as [75]:

[...] a conceptual framework or process that considers the structure of the

stages involved in the development of an application from its initial feasibility

study through to its deployment in the field and maintenance.

16

While the SDLC states what needs to be done, there are numerous models that formalize

exactly how to perform the SDLC. The models contain steps that are commonly referred

to as a phases. A few of the popular models are described below.

2.2.1 WATERFALL

The waterfall model is the oldest and most influential of the SDLC models. It was first

presented at a Navy Mathematical Computing Advisory Panel in 1956 by Herb Benington

[7]. Figure 2 shows the model Benington outlined for producing large software systems.

In 1970, Benington’s model was modified by Royce [72]. Royce produced an updated

version of the diagram seen in Figure 3 which provides some loops to go back to a

previous phase in the workflow.

Figure 2: Benington’s original diagram for producing large software systems, adapted
from [7]

The modern version of the waterfall model specifies that each phase needs to be

17

Figure 3: Royce’s version of the waterfall model for producing software systems,
adapted from [72]

entirely completed before moving onto the next phase. Some small amount of overlap is

permitted and looping occurs but both actions are discouraged and should be limited. A

modern diagram of the waterfall model can be seen in Figure 4.

Waterfall has some excellent features such as: simple to understand, easy to plan,

and well-defined phases. However, waterfall lacks the flexibility required of many

software systems built today [58]. Due to the fact the phases are so sequential, it makes

changes during the life cycle difficult and expensive if not impossible. Therefore, other

models of SDLC have been created to address the lack of flexibility of the waterfall

model. Notice, the other models are adaptations of waterfall.

18

Figure 4: Modern Waterfall Diagram, adapted from [36]

2.2.2 SPIRAL

The spiral model for software development was presented by Boehm in 1986 [9], [10].

The goal of the spiral model of software development is very risk-driven. A software

project will start with many small and quick iterations. Each iteration will cover the

following 4 basic steps.

1. Determine Objectives

2. Identify Risks

3. Develop and Test

4. Plan Next Iteration

This model allows software to be built over a series of iterations without risking too much

time or effort in any single iteration. Spiral requires a very adaptive management approach

as well as flexibility of the key stakeholders [75]. It can also be difficult to identify risks

that will occur in future iterations. Figure 5 provides a bit more detail on the iterations and

the overall process.

19

Figure 5: Spiral SDLC Model [12]

2.2.3 AGILE

Agile software development has arisen due to the inability of the waterfall and other

models to adjust to changes during the development cycle. Agile software development is

a group of SDLC models that operate under the influence of the following four key

principles [6].

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

20

Agile does not specify an implementation, but some specific models of agile SDLC are:

eXtreme Programming, Scrum, Lean, Kanban and others [36], [64]. Agile models are

very popular in many of today’s software development organizations because the models

work well for dynamic quickly changing applications such as web-based applications.

Startups have largely adopted the Lean methodology for its ability to identify a minimum

viable product2 and reduce the time to market [29].

2.2.4 SDLC COMMONALITIES

Even with the large number of SDLC models currently being used by different SDOs,

many commonalities exist among the models. The commonalities can be tied back to the

steps of waterfall. All of the models exhibit, to some degree, the following phases. The

only major difference is the scope, size, and duration of each phase. For example, the

spiral model spends less time in each phase. The agile models produce less documentation

and focus more on the implementation phase. Here are the five common phases in nearly

all SDLC models:

1. Requirements

The first phase is involved with defining what the software must do. Each piece of

functionality is considered a requirement.

2. Design

Before writing any code, the necessary infrastructure and involved software systems

must be identified. This phase can serve as a guideline for the remaining phases. If

done properly, this phase can greatly help the later phases.

3. Implementation

Often the only phase of the SDLC that is measured, this is the phase where the

actual computer code is written.
2A minimum viable product is a reduced version of software that contains only the bare minimum

functionality required to meet the requirements.

21

4. Testing

This phase validates the expected functionality. Also, testing attempts to discover

unexpected side affects of the software.

5. Deployment and Maintenance

All software must be correctly deployed and maintained. This phase is the most

expensive and lengthy phase of the software development life cycle.

These five steps cannot cover everything that needs to be accomplished during a

project. They just provide of rough guideline of what needs to be completed in order to

ensure a more successful software release. Appendix A contains a more detailed list of the

tasks necessary to complete the software life cycle.

2.3 WHAT IS SOFTWARE ENGINEERING?

Software Engineering as a term dates back to the 1968 North Atlantic Treaty Organization

(NATO) conference [65], [85]. Over the years many definitions have been provided.

Institute of Electrical and Electronics Engineers (IEEE) provides a definition that

encompasses many of the other definitions. IEEE ISO610.12 defines software engineering

as, “The application of a systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software” [39].

Software engineering has struggled to determine the correct projects to complete

[22]. Software projects are commonly behind schedule and over budget [15], [38], [49],

[56] with nearly 20% of projects in the United States still failing [26]. As of 2015,

Software engineering is still awaiting the professional status of more established fields

such as medicine, law, and general engineering [47]. Organizations need a better

technique to understand the past performance so they can better predict the future

performance. Proper measurement will be essential to solidifying software engineering as

certified profession.

22

3 MEASURING AN SDO

Anything can be measured [37]. Thus, an SDO can be measured. Proper measurement is

crucial for improvement because without a starting point it is impossible to determine

progress. Also, consistent reporting is essential for tracking historical performance.

The SDLC, like any process, needs to be properly measured. In order to

accomplish proper measurement, three activities need to occur [28].

1. Identify Process Issues

2. Select And Define Measures

3. Integrate with the Software Process

This dissertation will focus on steps 1 and 2. The process issue is the overall

effectiveness of the SDO. Section 4 will cover step 2 as it relates to an SDO. Step 3 will be

different for each SDO, but Section 5 provides a bit of guidance for storing the correct

information. It is up to the specific SDO to determine how and when the information is

being stored.

Many methods have been used in the past to measure and evaluate SDOs. Some of

the common methods will be explained in the following sections.

3.1 METRICS

A metric can be defined as a means of telling a complete story for the purpose of

improving something [54]. Metrics are frequently indirect measurements and are very

common in the measurement of SDOs. The following are some examples of metrics that

can be collected for an SDO.

• SLOC - The number of Source Lines of Code

• NOM - The Number of Methods per class

23

• Complexity - A numerical measure of the code complexity (some common

examples are McCabe [60] and Halstead [33])

• Design - The amount of coupling and cohesion present in the software code

• Source Code Analysis - Tools that determine whether code adheres to specified set

of rules. Common examples are PMD3 and FindBugsTM [5], [17].

All these metrics are beneficial, but none of them tell the story of the entire SDO. Most of

the metrics for an SDO, as seen in the list above, focus on the source code and

development phase. Since metrics are indirect, it can be very difficult to match SDO

performance with a metric or series of metrics. Metrics are great for tracking, but decision

making based upon metrics alone is difficult. That is why many of the other techniques

build upon metrics to provide a more complete overall picture of an SDO. Metrics are a

great starting point, but more is needed to properly evaluate performance.

3.2 INDICATORS

Another common measurement technique is indicators. An indicator is simply a

performance measure. Typically, a number of indicators will be placed together and

displayed in some report or on some dashboard. Indicators can be crucial measurements

within any business setting, and an SDO is no exception. Determining the correct

indicators for an organization can be difficult, and many organizations incorrectly classify

the indicators [67]. The differences between the indicators will be explored and possible

measures for each indicator in an SDO will be presented. The four categories of indicators

important to an SDO are shown in Table 1.

Performance Measure Description

RI (Result Indicator) What has been done?

3PMD is a source code analysis product. It is not an acronym.

24

Performance Measure Description

KRI (Key Result Indicator) How you have done?

PI (Performance Indicator) What to do?

KPI (Key Performance Indicator) How to dramatically increase performance?

Table 1: INDICATORS

Indicators can be used in just about every organizational setting from businesses to

non-profit organizations. They are not unique to SDOs, and the exact indicators to track

are very specific to the organization. The indicators chosen by one organization might not

be the same as the indicators chosen by another organization. The following sections will

explain the type of indicators in more detail and provide some examples for an SDO.

3.2.1 RESULT INDICATORS (RI) FOR AN SDO

Result Indicators are performance measures that summarize activity. All financial

performance measures are result indicators. Result indicators are measured on a timely

basis (daily, weekly, monthly) and are the result of more than one activity. They do not tell

staff what needs to be done to improve the RI. For an SDO, some possible RIs are seen in

Table 2.

Result Indicators

Requirements Implemented Per Month

Monthly SLOC

New Weekly Users

Monthly Development Hours

Webpage Views Yesterday

Monthly Development Hours

Monthly Server Uptime

25

Result Indicators

Quartely Software Sales

Table 2: RESULT INDICATORS FOR AN SDO

3.2.2 KEY RESULT INDICATOR (KRI) FOR AN SDO

Key Result Indicators are measures of multiple activities that give a clear picture of

whether the organization is traveling in the right direction. Unfortunately, KRIs are

commonly mistaken for KPIs [67]. KRIs do not tell an organization what is needed to

improve the results. KRIs are highly beneficial for high-level management and not

necessarily beneficial for staff working directly on the software. For an SDO, some

possible KRIs are seen in Table 3.

Key Result Indicators

Customer Satisfaction

Net Profit

Money Spent on Fixing Software

% of New Features vs. Fixes

Time on Website

% Servers Meeting the Expected Availability

Table 3: KEY RESULT INDICATORS FOR AN SDO

3.2.3 PERFORMANCE INDICATOR (PI) FOR AN SDO

Performance Indicators are non-financial performance measures that help a team align

themselves with the organizations strategy. These are important to the organizations

success, but they are not the key measures that will lead to drastic improvement. They are

26

specifically tied to a team and all staff understand what actions need to be taken to

improve the PI. For an SDO, some possible PIs are seen in Table 4.

Performance Indicators

% Test Coverage4

of Project Defects from Key Customers

Requirements Scheduled for Next Release

of Missed Requirements

% of Late Projects

Table 4: PERFORMANCE INDICATORS FOR AN SDO

3.2.4 KEY PERFORMANCE INDICATOR (KPI) FOR AN SDO

Key Performance Indicators are performance measures focusing on critical aspects for

current and future organizational success. Notice, KPIs are not focused on historical

performance, and they clearly indicate how to drastically increase performance. KPIs

allow a team to monitor current performance and quickly take action to correct future

performance. KPIs cover a shorter time frame than KRIs. KPIs consist of the following

seven characteristics [67].

1. Not financial

2. Measured frequently (hourly, daily, weekly)

3. Acted on by CEO5 and/or upper-level management

4. Clearly indicate the action required

5. Tie responsibility to a particular team
4Test Coverage is simply the percentage of the code that is being tested. Ideally, this number

would be 100%, but higher is better.
5Chief Executive Officer

27

6. Have a significant impact

7. Encourage appropriate action

Antolic in [2] made one of the earliest attempts to identify and measure the KPIs

for an SDO. Antolic’s strategy focused around six KPIs.

1. Schedule adherence

2. Assigned content adherence

3. Cost adherence

4. Fault slip through

5. Trouble report closure rate

6. Cost per defect

However, according to the definition of KPI just presented, they are not really KPIs but

instead KRIs. That is because none of the six clearly indicate the action required to

improve the measure. Also, it is unclear if improving any of the measures will drastically

improve performance.

For an SDO, Table 5 identifies some more appropriate KPIs.

Key Performance Indicators

Projects more than 20% behind schedule

Servers currently unavailable

Automated tests failing for more than 24 hours

Projects with test coverage less than 60%

Projects with more than 10 SIT defects

Unfixed, high priority PROD defects older than 1 week

Table 5: KEY PERFORMANCE INDICATORS FOR AN SDO

28

3.3 BALANCED SCORECARD

Developed in 1992 by Robert S. Kaplan and David P. Norton, the balanced scorecard is a

set of measures that give management a quick and comprehensive view of the

organization [52]. Originally created as an extension to the already existing financial

measures, the balanced scorecard expanded the measures to include: customer focus,

internal process, and learning/growth. This gave organizations a more comprehensive

view that was not strictly financial. It allows an organization to focus on long-term

strategic goals instead of just short-term goals. As a result of the strategic focus, the

balance scorecard rapidly gained widespread adoption among businesses [53].

In 2010, David Parmenter [67] added two more characteristics to the balanced

scorecard: employee satisfaction and environment/community. This results in a total of

six characteristics for the balanced scorecard.

1. Financial

2. Customer Focus

3. Internal Process

4. Learning and Growth

5. Employee Satisfaction6

6. Environment/Community6

Balanced scorecards are great for easily displaying the important information

about an organization. The downside is a balanced scorecard does not specify what

exactly needs to be tracked. It can be very difficult to determine exactly what PIs, RIs,

KRIs and/or KPIs to track in a balanced scorecard. It specifies six broad categories. It is

also not specific to an SDO and it does not produce a single number. However, any new

6 Added later by Parmenter [67].

29

measurement technique for an organization should be compared with the balanced

scorecard.

3.4 PROJECT MANAGEMENT MEASUREMENT

A final strategy to measure an SDO is focused on the aspect of project management.

Project management is the guidance applied to a project to ensure an effective and efficient

completion. Proper project management will ensure all steps of the SDLC continue to

progress and all obstacles are handled in a timely fashion. According to Putnam and

Myers in [68], the five core measurements for managing software projects are:

1. Quantity of function - usually measured in terms of size (such as source lines of

code), that ultimately execute on the computer

2. Productivity - as expressed in terms of the functionality produced for the time and

effort expended

3. Time - the duration of the project in calendar months

4. Effort - the amount of work expended in person-months

5. Reliability - as expressed in terms of defect rate (or its reciprocal, mean time to

defect)

A process productivity number is calculated based entirely on aspects of the SDLC

and the five core measurements. It is a number targeted at project teams working on the

SDLC.

3.5 A SIMPLER MEASUREMENT

It is important to note that SDOs do not just develop software. An SDO has many other

duties including: deploying software, installing server hardware/software, writing

30

documentation, surveying users, research, innovation, education and other common

business duties. Thus it is important to measure as many duties as possible.

How can the PIs, RIs, KRIs, and KPIs be combined to form a single value called

the CRI (Cumulative Result Indicator)? If the indicators are targeted for upper

management to understand performance, then KPIs are not the correct indicators. KPIs

are targeted towards immediate action and future performance. RIs and KRIs are the most

beneficial for upper management to gauge how an organization is doing. However, with so

many possible RIs and even KRIs, it can be tricky to gain a quick understanding. The next

section will present and explain a technique to combine KRIs into a single number for

immediate and effortless evaluation of an SDO.

4 CUMULATIVE RESULT INDICATOR (CRI)

SDOs struggle to measure overall performance. The Cumulative Result Indicator (CRI) is

an algorithm to provide a single number score to measure the performance of an SDO. It

works by statistically analyzing the past performance of the organization and using that

information to score an organization on current performance. CRI is a collection of the

following five elements, which are actually KRIs, for an SDO.

1. Quality

2. Availability

3. Satisfaction

4. Schedule

5. Requirements

A separate CRI score is calculated for each element and then aggregated together

to form an overall CRI score. A new CRI score will be calculated based upon the selection

of a given time period (weekly, monthly, quarterly). CRI is not meant to be comparative

31

between organizations, but to measure the amount of increase or decrease a single

organization exhibits across elements. CRI is made to be easily expandable to other

elements if desired.

The scores for CRI will range from -1, indicating the worst performance, all the

way to +1, indicating perfection. A score of 0 is an indication of meeting the basic

expectations. A negative score indicates worse-than-expected performance and a positive

score indicates better-than-expected performance. For example, a CRI score of 0.35

means the organization is performing 35% better than expected. Conversely, a score of

−0.15 means an organization is performing 15% worse than expected.

Below are the attributes of the CRI scoring.

• The range of scores must have equal values above and below 0.

• The minimum score must equate to the worst possible performance, however that is

defined.

• Similarly, the maximum score must equate to the best possible performance.

• A score of 0 must be average (or expected) performance.

• All individual elements must have the same scoring range.

As long as those 5 features are met, the range of scores can be anything. The range

of [−1, 1] was chosen because it is easy to scale to a different range such as [−10, 10] or

[−100, 100]. Thus scaling can be applied to obtain values in any appropriate range. The

scaling factor is denoted with the variable k. The scale must be the same for all five

elements.

4.1 ELEMENTS OF CRI

Each of the five elements of CRI has its own set of data that needs to be collected and

formula for calculating a score. These five elements will be outlined in the next sections.

32

4.1.1 QUALITY

Measuring quality is a crucial part of accessing software development results. Poor

quality means time, money, and resources are spent fixing the problems. As a result, new

features are not being created. One of the key indicators of software quality is defects. It

is important to measure the number of defects associated with a software release because

industry-wide the current defect removal rate is only about 85% and this value should be

increased to about 95% for high quality software [45]. Organizations are leaving too many

defects unfixed. If organizations could lower the number of defects, then not as many

defects would need to be fixed, which in turn would raise the defect removal rate.

Another aspect of defects is severity levels. A severity level indicates the

importance of a defect that has been discovered. Although an organization can choose

whatever severity levels they choose, it is common practice to use five severity levels [70].

The most severe level for a defect is 1. All other levels drop in severity from that point.

Table 6 describes the five levels for defect severity.

Level Description

1 Software is unavailable with no workaround

2 Software performance degraded with no workaround

3 Software performance degraded but workaround exists

4 Software functions but a loss of non-critical functionality

5 Others: minor cosmetic issue, missing documentation

Table 6: SOFTWARE DEFECT SEVERITY LEVELS

QUALITY DATA In order to properly score the quality of an SDO, certain data needs to

be obtained in order to measure performance. Table 7 identifies the columns of data that

will be used to create a score for the quality element of CRI. Each column is classified as

33

required or optional. This is to allow some flexibility in the model for organizations that

collect varying amounts of data.

Column Name Data Type

Application ID String (factor) Required

Frequency Date Date Required

Development Effort Integer Required

Testing Effort Integer Optional

SIT Defects Integer Optional

UAT Defects Integer Optional

PROD Defects Integer Required

Table 7: QUALITY DATA NEEDED FOR CRI

The development and testing effort can come from any of the following choices for

effort. It is possible that other measures will work for effort.

Actual Time This number is a representation of the total amount of time spent on

a project. This number can be measured in any unit of time: hours, days, weeks, etc.

Actual time can be applied to development or testing effort.

Estimated Time This number is a representation of the initial estimated amount

of time spent on a project. This number can be measured in any unit of time: hours,

days, weeks, etc. Estimated time can be applied to development or testing effort. It

is common for the estimated and actual times to be different.

SLOC This number is the count of the total number of lines of source code for a

project. Obviously, this item only counts as a level of effort for development unless

coding in used to generate automated testcases. 7

7Automated testing is the process of creating software to automatically run tests against other
software. The adoption of automated testing is varied and it is not a solution in all cases [69].

34

Modified Lines Of Code This number is a count of the number of modified

lines of source code. Modified lines is defined as the number of deleted, added, and

modified lines of source code. This number is different from above since it does not

include all the lines of source code. Similar to above, this number makes more sense

for development effort.

Testcases A testcase is a step or series of steps followed to validate some expected

outcome of software. Organizations will create a number of testcases to be validated

for a software system. The number of such testcases could be used as a level of

testing effort.

Notice the data does not include a severity level. The severity level should be

handled before being stored. A good technique is to count the defects based upon the

weighting scheme in Table 8 [70]. For example, finding one defect of severity level 5 will

result in a total count of one. However, finding one defect of severity level 2 will result in

a total count of 15. This strategy helps to standardize the number of defects found. An

organization can alter the values of Table 8 based upon priorities or use a different

technique if desired. It is important to establish a standard, meaningful number for SIT

defects, UAT defects, and PROD defects which manages severity appropriately.

Severity Level Weight

1 30

2 15

3 5

4 2

5 1

Table 8: DEFECT SEVERITY LEVEL WEIGHTING

35

QUALITY FORMULA The first step in creating a score for the quality element is

analysis of the historical data to create a baseline function. The historical data is all

quality data collected before a given point in time. Some common historical cutoffs are

the current date or the end of the previous fiscal year. Then a mathematical model, called

the baseline quality function, to predict PROD Defects will be produced. In statistical

terms, the response is PROD Defects and the predictors are: UAT Defects, SIT Defects,

Testing Effort, and Development Effort. Some of the following strategies to find a

reasonable model include:

• Removal of outliers and/or influential points

• Linear Regression

• Stepwise Regression

• Ridge Regression for suspected multicolinearity

Once a model has been found, it will be labeled as f and it will not change. The

function f can be the same for all Application IDs or it can be different for each

Application ID or any combination of Application IDs. It serves as the quality baseline for

CRI. All future quality scores will be dependent upon the original f . Once set, the model

will not change.

After the model f has been determined, it is time to calculate the quality score for

each application ID within the given time period. The quality score for each Application

ID can be calculated as follows.

S1i =

 where fi ≥ di : fi−di
fi
· k

where di > fi : fi−di
σ2
i
· k

, calculate quality score for each app i

where

36

• S1i is the quality score for Application ID i

• k is the scaling factor to produce results in the range [−k, k]

• n is the number of Application IDs

• di is the actual PROD defects for Application ID i

• fi is the function to predict PROD defects for Application i based upon UAT

Defects, SIT Defects, Testing Effort, and Development Effort

• σ2
i is the estimated variance for Application i

Then the overall quality score is calculated as below.

S1 =
n∑
i=1

wiS1i

where

• S1 is the combined quality score for all Application IDs, a weighted average

• wi > 0 for all i

•
n∑
i=1

wi = 1

Then S1 represents the CRI quality score for that given time frequency.

4.1.2 AVAILABILITY

All the new requirements and great quality do not matter if the software is not available.

Thus it is essential to set an expected Service Level Agreement (SLA)8 and measure

performance against that SLA. The following section will outline the data needed to

properly calculate an SLA and to calculate the CRI score for availability.

8For an SDO, the SLA is a contract specifying the amount of time software will be available
during a given time period.

37

Special Note: The Service ID for availability does not have to be the same as the

Application ID for quality or any of the other elements. Some organizations have a

one-to-one mapping between Applications being developed and services being deployed.

Others have more complex scenarios that require multiple applications to be combined to

form a service. Then the availability of the system is tracked.

AVAILABILITY DATA Table 9 identifies the necessary data to calculate the CRI

element score for availability. Notice the three optional fields: Uptime, Scheduled

Downtime, and Unscheduled Downtime; they are optional because they can be used to

calculate the Percent Uptime. The Percent Uptime is the important value for the CRI

schedule score. Here are the two common approaches for calculating percent uptime:

The preferred method:

Percent Uptime =
Uptime

Uptime + Scheduled Downtime + Unscheduled Downtime

and the alternative method:

Percent Uptime =
Uptime

Uptime + Unscheduled Downtime

The only difference is the removal of scheduled downtime from the calculation. The

calculation approach is typically specified in the contract associated with the SLA. Thus,

the Percent Uptime is important and it can either be supplied in the data or calculated from

the optional fields. For the purposes of this dissertation, the percent uptime should be

handled in decimal form and not as a percent out of 100.

Column Name Data Type

Service ID String Required

Frequency Date Date Required

Uptime Float Optional

38

Column Name Data Type

Scheduled Downtime Float Optional

Unscheduled Downtime Float Optional

Percent Uptime Float Required

Expected Percent Uptime Float Required

Table 9: AVAILABILITY DATA NEEDED FOR CRI

AVAILABILITY FORMULA The formula for availability is more straightforward than

the quality formula. It does not include any analysis of the historic data. That lack of

historical analysis is avoided since the SLA provides an existing baseline to measure

against. The following formula is simply a percentage the SLA was exceeded or missed.

S2i =

 where Aai ≤ Aei :
Aai−Aei

Aei
· k

where Aai > Aei :
Aai−Aei

1−Aei
· k

, calculate availability score for each sys i

where

• S2i is the availability score for System ID i

• k is the scaling factor to produce results in the range [−k, k]

• Aai is the actual availability for System ID i

• Aei is the expected availability for System ID i

Then the overall availability score is calculated as below.

S2 =
n∑
i=1

wiS2i

where

39

• S2 is the combined availability score for all Service IDs, a weighted average

• wi > 0 for all i

•
n∑
i=1

wi = 1

Then S2 represents the CRI availability score for that given time frequency.

4.1.3 SATISFACTION

The satisfaction of users, customers, and/or business partners is the third element to be

measured. This element is important because in an established business, retaining

customers is less expensive than attracting new customers [4]. Depending upon the type of

SDO, the customers may be internal or external to the organization. For the remainder of

this section, the term customer will be used to represent any person who is responsible for

guidance, decision-making or use of the software. The term customer can refer to a: user,

paying or nonpaying customer, internal or external business partner, or any other person

deemed influential to the development of the software.

If one element of CRI was to be rated as the most important, satisfaction would be

it. Without satisfied customers, the rest of the measures do not matter. For example,

having a quality application that is always available does not matter if the application is

not what the customer wants.

Surveys are used to measure satisfaction for CRI. A series of statements will be

presented to all or a subset of the customers. Any customer that chooses to respond to the

survey is considered a respondent. A respondent can rate statements based upon a Likert

Scale9 with a numerical response where the minimum value indicates maximum

disagreement and the maximum value indicates the maximum agreement. Common rating

scales would be from 1 to 5 or from 1 to 3. An example survey can be seen in Table 10.

9”The Likert Scale presents respondents with a series of (attitude) dimensions, which fall along
a continuum.” [18]

40

ID Statement Disagree Neutral Agree

1 I find the software easy to use.

2 I would recommend this software to others.

3 The software makes me more productive.

4 I am happy with this software.

Table 10: SAMPLE SURVEY FOR SATISFACTION

ISSUES WITH SURVEYS Surveys present a number of challenges that need to be

presented and briefly discussed. Here are some of the issues that need to be addressed

when using surveys.

Text

The specific text used in the questions or statements is very important. The text

cannot be too vague. Also, the text must be clear enough to eliminate

misinterpretation. Survey questions must be complete and not include gaps. For

example, if an age range is presented, it must include all possible ages. These are

just some of the difficulties with getting the text correct in surveys.

Number and Ordering

The number of questions is important. Too many questions and the respondents will

lose interest and begin responding without the adequate attention needed. Plus, if

the survey is too long there is the risk of quitting before completion. A short survey

might not cover the adequate amount of material. Both short and long surveys run

the risk of providing inaccurate responses. After determining the best number of

questions, the ordering of the questions is important. Previous survey questions can

have an unintended impact on responses. Thus, the ordering of questions needs to be

addressed.

41

Sampling

Next is the issue of sampling. Not every customer can be surveyed, so sample sets

of customers need to be presented with a survey. In the case of CRI, there are two

possible scenarios for sampling.

1. When an SDO is part of a larger organization, there typically is a small number

of business partners that help to guide and direct the work performed by the

SDO. In this case, the business partners might be the the ones offering survey

responses and they should all be willing to respond. Thus, those business

partners represent the entire population, and the surveys should result in a

100% response rate which is technically a census. The only bias that will be

present here is the bias of the business partners and sampling cannot control

for that.

2. End-users will be surveyed for satisfaction. Obviously, the entire population

cannot be surveyed, so a probability sample should be randomly created. Even

then, bias will be present.

• Not all users will respond. This is because survey respondents tend to sit

at the extremes of either satisfied or dissatisfied. Thus the results will tend

to indicate that separation.

• Even with probability sampling it is possible to miss entire groups of

population members. For example consider a banking application such as

a savings account, a survey would most likely be presented online, and it

would have a coverage bias due to the exclusion of savings account

holders that do not bank online.

• A selection bias can occur when some members of the population have a

higher probability of inclusion in the sampling frame than others. One

example could be a user with multiple savings accounts. The selection

42

bias is typically easy to avoid if the bias is identified. Weighting is a

common solution for selection bias.

For more on creating appropriate surveys, see [77] by Snijkers, Haraldsen, Jones,

and Willimack. They present a framework named generic statistical business process

model (GSBPM) for conducting surveys in a business or organizational setting. GSBPM

covers the issues above as well as a few more issues such as response storage and risks.

Also, Cowles and Nelson provide another good resource for preparing and conducting

surveys [18]. They even include entire chapters on both writing survey questions and

survey errors.

SATISFACTION DATA Once the surveys have been distributed and the results

collected, Table 11 displays the data that needs to be collected in order to calculate the

satisfaction element score for CRI.

Column Name Data Type

Question ID String Required

Question Text String Optional

Respondent ID String Optional

Frequency Date Date Required

Response Integer Required

Response Date Date Optional

Application ID String Optional

Table 11: SATISFACTION DATA NEEDED FOR CRI

SATISFACTION FORMULA After collecting the necessary survey data from Table 11,

calculating the score is rather straightforward. The scores for each question are averaged

and then those values are averaged together. If some survey questions are more important

43

than others, the formula could be easily modified to include weighting.

First the score for each question needs to be calculated.

S3i = k ·
∑m

j=1(
2aij−min−max
max−min)

m

• S3i is the satisfaction score for Question ID i

• k is the scaling factor to produce results in the range [−k, k]

• aij is the answer to question i for respondent j

• n is the number of questions

• m is the number of respondents

• min is the minimum score for a question

• max is the maximum score for a question

Then the satisfaction score is calculated as below. Use a weighted average to

combine the question scores:

S3 =
n∑
i=1

wiS3i

where

• S3 is the combined satisfaction score for all Questions IDs, a weighted average

• wi > 0 for all i

•
n∑
i=1

wi = 1.

Then S3 represents the CRI satisfaction score for that given time frequency.

44

4.1.4 SCHEDULE

Delivery of software in a timely manner is an essential part of being a successful SDO.

Being able to meet scheduled deadlines is a sign of accurate estimation and planning.

Drastically missing deadlines is a sign of an SDO with a process that needs refinement.

Studies have shown that software projects exceed the estimates by an average of 30%

[50]. Thus it is important to score SDOs on accurate schedule adherence. Without

tracking and measuring schedule adherence, it will not improve.

The CRI schedule score provides a numeric value to indicate the amount schedules

are missed or exceeded. The score provides a cumulative measure of the performance as

compared to other months. The score is based upon the historical deviance of estimates

for projects. Projects completing on time will be given a score of 0. Projects finishing

early will be rewarded with positive scores increasing toward k. Alternatively, late

projects will be given negative scores that approach −k as the projects become more late.

SCHEDULE DATA In order to calculate the schedule score, certain dates need to be

present. Table 12 outlines the necessary data for schedules. One date is considered

optional as it is not used in the CRI calculation, but it is an important date that could be

useful for future enhancements to CRI.

Column Name Data Type

Project ID String Required

Frequency Date Date Required

Scheduled Start Date Date Required

Scheduled Finish Date Date Required

Actual Start Date Date Optional

Actual Finish Date Date Required

Table 12: SCHEDULE DATA NEEDED FOR CRI

45

SCHEDULE FORMULA Schedule has a clear date for finishing on-time, however there

are not clear bounds as to how early or late a project can be delivered. Thus, the formula

for schedule is more involved than availability or satisfaction. It requires some analysis of

the historical data. The first step of the formula is determining how often projects are early

or late, and by how much a project is early or late. This can be accomplished by looking at

the distribution of the data. Specifically, look at what percentage of the entire project

duration the schedule was missed.

∆i =
Fai − Fsi

Fsi −Bsi + 1

where

• Fai is the actual finish date of project i

• Fsi is the scheduled finish date of project i

• Bsi is the scheduled beginning date of project i

• ∆i is the proportion the schedule was missed for project i

Once all the ∆i’s have been determined, a distribution must be fit to the data.

There are several techniques for testing the fit of a distribution: histograms, chi-square,

Kolmogorov-Smirnov, Shapiro-Wilk, or Anderson-Darling [20], [55]. The distribution is

needed for the Cumulative Distribution Function (CDF) . The CDF maps the values to a

percentile rank within the distribution [23]. The CDF will be transformed to create the

schedule score for CRI. Since all CDF functions fall within the range [0, 1], the function

needs to be shifted to center around 0, and then doubled to fill the desired range of [−1, 1].

Thus the CRI schedule score for each project becomes the following.

S4i = 2k ·
(
CDF (∆i)−

1

2

)
where

46

• S4i is the schedule score for Project ID i

• k is the scaling factor to produce results in the range [−k, k]

Then the overall schedule score is calculated as below.

S4 =
n∑
i=1

wiS4i

where

• S4 is the combined schedule score for all Project IDs, a weighted average

• wi > 0 for all i

•
n∑
i=1

wi = 1

Then S4 represents the CRI schedule score for that given time frequency.

ALTERNATE APPROACH An alternative approach for scoring schedule goes as

follows. The best possible score should be achieved when meeting the estimated date

exactly. The maximum score should come from the best estimate. Then given historical

release data, it is easy to determine an average ∆ between the actual and the estimated.

Finishing a project within that ∆ should result in a positive score. Outside the ∆ results in

negative scores. For example, a project releasing one day early or one day late would

receive the same score because in both cases the estimate was missed by one day.

The first step of the formula is finding the percentage the schedules were missed

for historical projects. The calculation treats over- and under-estimating the schedule the

same. The same penalty is applied in both cases. For example, being 15% late will result

in the same score as being 15% early. Perform this calculation only for projects that did

not exactly meet the estimated finish date.

∆i =

∣∣∣∣ Fai − Fsi
Fsi −Bsi + 1

∣∣∣∣

47

Find the average of the ∆i’s. This is the average proportion of a missed schedule.

∆̄ =

∑n
i=1 ∆i

n

The formula for schedule is then a percentage above or below the ∆. The number

is calculated for each project, and then averaged to form the schedule score.

After ∆̄ is calculated, the following formulas are used to create the schedule scores

for each project and then the averaged schedule score.

S4i =

where ∆i ≥ 1 : −1 · k

where ∆i ≤ ∆̄ : ∆̄−∆i

∆̄
· k

where ∆i > ∆̄ : ∆̄−∆i

1−∆̄
· k

, calculate schedule score for each project i

S4 =
n∑
i=1

wiS4i

where

• S4 is the combined schedule score for all Project IDs, a weighted average

• k is the scaling factor to produce results in the range [−k, k]

• wi > 0 for all i

•
n∑
i=1

wi = 1

• n is the number of projects

• Fai is the actual finish date of project i

• Fsi is the scheduled finish date of project i

• Bsi is the scheduled beginning date of project i

48

• ∆i is the percent the schedule was missed

• ∆̄ is the average percent schedules are missed

• S4i is the schedule score for project i

Then S4 represents the CRI schedule score for that given time frequency. Again, this was

just an alternate approach to scoring schedule. It will not be used in the case studies.

4.1.5 REQUIREMENTS

The requirements of an SDO are important. Requirements are desired new features or

enhancements to a software product. It is important to know how many requirements were

scheduled to be completed versus how many actually got completed. They provide a

measurement of the amount of work being completed. However, not all requirements are

created equal. Some requirements can be quickly and easily implemented while other

requirements will take much longer. It is often difficult to know the challenges ahead of

time. Due to this uncertainty, estimating the number of requirements a team can complete

in a given time frame can be difficult. Thus, the number of requirements is one way to

measure amount of work but there are others. Here are three possible choices in

descending order of preference.

1. Function Points - Function points measure the size of the software functionality,

not the size or time required to implement the functionality [43]. If done properly,

function points will provide the most concise measurement for amount of work

being completed.

2. Story Points - Story points, sometimes just referred to as stories, are broken down

requirements that can be completed in an Agile Sprint of two to four weeks. A story

is usually smaller, simpler, and more concise that a plain requirement.

Unfortunately, these only apply to an SDO using the Agile methodology,

specifically Scrum [3].

49

3. Requirements - These are just the requirements as written by the users or business

partners. Each requirement can vary greatly from another requirement. Estimating

number of requirements can be a difficult if not impossible task.

To summarize, this element is not completely a measurement of requirements but

rather a measurement of the work being completed.

REQUIREMENTS DATA Table 13 specifies the data required to compute a score for the

requirements element of CRI. Again, scheduled requirements and actual requirements can

also be a count of story points or function points. All of the columns are required. The

data collected is the frequency date and then the number of requirements scheduled to be

completed and the actual number of requirements completed.

Column Name Data Type

Project ID String Required

Frequency Date Date Required

Scheduled Requirements Integer Required

Actual Requirements Integer Required

Table 13: REQUIREMENTS DATA NEEDED FOR CRI

REQUIREMENTS FORMULA The requirements formula is the percentage above or

below the scheduled number of requirements. Requirements have a nice lower bound of 0

since negative requirements cannot be completed10. Unfortunately, an upper bound does

not exist. The variability of requirements is not as large as the variability of the number of

defects, so a simpler strategy can be used. For requirements, a multiplier b will be used to

find the upper bound. The number of scheduled requirements should be multiplied by b to

obtain the upper bound. The value of b should be determined by looking at the historical

10Theoretically, a negative requirement would be considered a defect.

50

data to make sure no number of completed requirements will exceed b times the number

of scheduled requirements. An example will be shown in Section 6.4. Common choices

for b will be 1 and 2. Also, the formula will be created to deal with a value going above

the upper bound.

S5i =

where Rai > Rsi · (b+ 1) : 1 · k

where Rai ≤ Rsi :
Rai−Rsi

Rsi
· k

where Rai > Rsi :
Rai−Rsi

b·Rsi
· k

, requirements score for project i

where

• S5i is the requirements score for Project ID i

• k is the scaling factor to produce results in the range [−k, k]

• Rai is the actual requirements completed for Project ID i

• Rsi is the expected requirements completed for Project ID i

• b is the multiplier to determine the upper bound

Then the requirements score is calculated as below. Use a weighted average to combine

the requirements scores from the Project IDs.

S5 =
n∑
i=1

wiS5i

where

• S5 is the combined requirements score for all Project IDs, a weighted average

• wi > 0 for all i

•
n∑
i=1

wi = 1

Then S5 represents the CRI requirements score for that given time frequency.

51

4.1.6 OVERALL CRI SCORE

In order to accomplish the single number score that CRI requires, the five element scores

must be combined. The combination of the scores is a weighted average. The weights can

be set based upon the priority of the SDO. Thus, the overall CRI score is calculated as

below.

CRI =
n∑
i=1

wiSi where
n∑
i=1

wi = 1

where

• CRI is the overall CRI score for the time frequency

This weighted average allows for a score to be computed even when not all five

elements are present. Just perform the weighted average with as many elements as

present. This technique allows CRI to be implemented before data for all the elements has

been collected. Just begin to average elements as they become accessible.

4.2 CORRELATIONS IN CRI

It is possible that two or more of the five elements of CRI will be correlated. This means

that one of the elements can be predicted based upon the values of the other elements.

Although it is possible for correlation to occur between any of the elements, the

satisfaction element is an obvious element which deserves attention due to the human

involvement of the surveys. If a schedule is missed or an important requirement dropped,

that could have a large negative effect on the satisfaction surveys. The same could be said

of quality or availability with regard to the satisfaction. However, satisfaction is not the

only potentially correlated element. It is also possible that a decrease in quality could

result in unexpected downtime which could have a negative result on availability.

Similarly, if requirements are added, it is possible the schedule will be negatively

52

impacted. Also, if requirements are dropped, the quality might suffer due to missing

functionality.

It is impossible to know which or if correlations will always exist. Thus it is

necessary to check for correlations after determining element and overall CRI scores. If an

element is determined to be correlated with another element, neither element should be

dropped, but rather one of the elements should be weighted less than the other correlated

element. This technique keeps the most data available but lessens the importance of the

correlated element.

4.3 SENSITIVITY OF CRI

The sensitivity of the formulas should be tested as the scores should not fluctuate

drastically for similar values. There are two possible techniques for testing the sensitivity

of the formulas.

1. Given the historical data that has been collected, alter the values by some small

random amount. Then recalculate the CRI element score and compare with the

original score. This technique can be repeated many times in order to verify small

changes do not largely affect the score. Thus, a formula which is not overly

sensitive.

2. Another technique is to use Monte Carlo methods to randomly generate input values

for the element functions. This can be done by finding the distributions of the

historical data, and randomly selecting from that distribution. If historical data is

not available, then the normal distribution can be used. See [76] for more

information on sensitivity analysis in statistical modeling.

.

53

4.4 CRI COMPARED

CRI is one way to evaluate an SDO, and it is also a technique of software analytics.

Therefore, it is beneficial to compare CRI with some of the other techniques and

guidelines available. The next sections will provide those comparisons.

4.4.1 CRI VS. FOCUS AREAS OF SOFTWARE ANALYTICS

Earlier, in the introduction section 1.4.3, 3 main focus areas for software analytics were

presented. Table 14 provides a explanation of how CRI addresses each focus area. As can

be seen, CRI clearly addresses the three main focus areas of software analytics. CRI does

not provide any mechanisms for improving the focus areas, but it provides a consistent

mechanism to measure the focus areas.

Focus Area Why CRI?

User Experience One of the five elements of CRI is satisfaction. While not all of the

questions focus solely on the user experience, the entire purpose

of the survey is to determine if the user is satisfied with the soft-

ware product. Does it have the correct features? Are new features

added in a timely manner? Of course, specific survey questions

can be created to focus solely on a certain user experience.

Quality Again, one of the five elements specifically focuses on quality.

CRI provides a single number to measure quality. Therefore, it is

easy to track changes in quality over time. CRI does not address

how to improve the quality, but without a consistent measurement,

it would be impossible to determine the change in quality.

54

Focus Area Why CRI?

Development

Productivity

The combination of CRI elements, schedule and requirements,

provide an indication of development productivity. The schedule

element measures the productivity related to estimated schedule.

Similarly, the requirement element measures the amount of work

actually being completed.

Table 14: SOFTWARE ANALYTICS FOCUS AREAS AND CRI

4.4.2 CRI VS. IMPORTANT QUESTIONS OF SOFTWARE ANALYTICS

Also, section 1.4.3 mentions three important questions that software analytics must

address. Table 15 presents the three questions and a description of how CRI addresses that

specific question. It is clear that CRI addresses the questions. CRI is a beneficial

technique of software analytics when applied to SDOs.

Question Why CRI?

How much better is my

model performing than

a naive strategy, such as

guessing?

CRI provides consistency which may not exist without it.

Therefore, CRI removes the guesswork of measuring an

SDO.

How practically signifi-

cant are the results?

The CRI score is consistent and easy to comprehend. Thus

comparison with past performance is quick and simple.

This is a significant advantage for software development or-

ganizations.

55

Question Why CRI?

How sensitive are the

results to small changes

in one or more of the in-

puts?

The question was extensively addressed in section 4.3. CRI

is not overly sensitive to small changes in the inputs.

Table 15: IMPORTANT QUESTIONS FOR SOFTWARE ANALYTICS AND CRI

4.4.3 CRI VS. BALANCED SCORECARD

Section 3.3 discusses the characteristics of the balanced scorecard. Table 16 presents a

comparison of the characteristics of a balanced scorecard versus CRI. As the newer two

characteristics of a balanced scorecard have only existed since 2010 and the adoption is

limited, the comparison will only be against the original four balanced scorecard

characteristics.

Balanced

Scorecard

CRI? Explanation

Financial No CRI does not address financial as it is best suited for an or-

ganization that treats software development as a fixed, bud-

geted expense. If the budget is fixed, CRI provides a num-

ber to indicate the amount of value for that fixed budget.

Customer Focus Yes CRI includes a customer survey which is completely cus-

tomer focused.

Internal Process Yes CRI is highly focused on internal processes. The CRI ele-

ments of schedule and requirement are completely focused

on how reality meets the expected process. CRI is nega-

tively impacted when internal processes are followed.

56

Balanced

Scorecard

CRI? Explanation

Learning/Growth No CRI does not address this characteristic.

Table 16: BALANCED SCORECARD VERSUS CRI

4.4.4 CRI VS. PROJECT MANAGEMENT MEASUREMENT

Previously in Section 3.4, the project management measurement was presented. Its

greatest limitation is the lack of focus on the entire SDO. Project management

measurement says nothing about the availability of the software infrastructure or the

satisfaction of the users. It is not near as comprehensive as either the balanced scorecard

or CRI. Actually, CRI incorporates the five core measurements from project management.

Plus, the process productivity number is less suitable for upper management and more

suitable for project teams. Although it does provide a single process productivity number,

it is does not have the same focus as CRI.

5 SDLC ANALYTIC ENGINE

In order for an SDO to properly track the elements of CRI, a data storage system should

be available to store the appropriate data. A consistent storage system should help to avoid

the problem of inaccurate data caused by numerous manipulations of the existing data

[66]. Plus, if the system is implemented correctly by allowing limited changes to existing

data, it will be able to alleviate some of the dishonesty that is currently present in software

projects [71]. This storage system will be named the SDLC Analytic Engine (SDLC-AE).

Once all the SDLC data is collected into a single place, there are many possible

applications. Software analytics will be much easier to create and gamification will be

much more easily attainable. CRI is just one possible application of the SDLC-AE. Figure

6 provides an overview of the data that could potentially be stored in the SDLC-AE as it

57

Figure 6: SDLC ANALYTIC ENGINE

relates to CRI. The SDLC-AE does not specify how the data is entered, just how the data

is stored.

5.1 DATABASE STRUCTURE

All the data necessary to compute CRI needs to be stored in a database. This section will

lay out the structure of tables and relationships necessary to store all the data within a

relational database. The SQL11 is written for an Oracle database, but the scripts can be

modified to work with other databases such as: PostgreSQL, SQL Server, or MySQL.

5.1.1 TABLES FOR RAW CRI DATA

The first set of tables that need to be created are tables to store the raw data that is

collected. These tables will match up with the necessary data for each of the five elements
11Structured Query Language (SQL) is a programming language designed for managing data in

relational database management system.

58

of CRI. Figure 7 provides a visual description of the tables that are needed. The tables

have no relationship with each other since they are raw data. The primary goal of these

tables is to store the raw data in a single location. The five table names are:

1. QUALITY RAW

2. AVAILABILITY RAW

3. SATISFACTION RAW

4. SCHEDULE RAW

5. REQUIREMENTS RAW

Notice these table names match with the five elements of CRI.

Appendix B.1 provides the necessary SQL statements to create the database tables

for storing the raw CRI data.

5.1.2 INTERMEDIATE SCORE TABLES FOR CRI

The next set of tables that need to be created are for the intermediate level element scores.

These tables hold the element scores at the application id, service id, and project id level.

Figure 8 provides a visual overview of the necessary tables. Furthermore, these tables also

lack relationships between one another because at this point, all the element scores are

still being treated independently. The five table names are:

1. QUALITY SCORE

2. AVAILABILITY SCORE

3. SATISFACTION SCORE

4. SCHEDULE SCORE

5. REQUIREMENTS SCORE

59

Figure 7: TABLES FOR RAW CRI DATA

Again, these table names match very closely with the five elements of CRI.

Appendix B.2 provides the necessary SQL statements to create the database tables

for storing the intermediate CRI scores.

5.1.3 FINAL SCORE TABLES FOR CRI

The final set of tables consists of only two tables.

1. ELEMENT

2. CRI SCORE

60

Figure 8: TABLES FOR INTERMEDIATE CRI SCORES

The first table is the ELEMENT table. It simply stores the CRI element (Quality,

Availability, Satisfaction, Schedule, Requirements, Overall) and an optional description.

The second table is the CRI SCORE table. It stores all the final element scores and the

final overall CRI score. It is related to the ELEMENT table. Figure 9 provides a visual

representation of the relationship between the two tables.

Figure 9: TABLES FOR FINAL CRI SCORES

61

Appendix B.3 provides the necessary SQL statements to create the database tables

for storing the final scores for each element and the final overall CRI scores for each time

frequency.

6 CASE STUDY: SCORING AN SDO OF A LARGE FINANCIAL INSTITUTION

Data has been collected from the software development processes of an SDO within a

large financial institution12. The data collection was from 2007 to January 2015. Only 4

elements had available data, and not all elements had data available for the entire time

period. The elements to be used are: quality, availability, schedule, and requirements. CRI

is still effective when not all data is available. The overall CRI score will then be a

weighted average of the available elements. This section will serve as a guide to preparing

the CRI score based upon the available data.

After the data has been collected, the raw data can be stored in the SDLC if

desired. Then scores for each of the 4 elements can be calculated. For this example, the

value of k will be 100 and the time frequency will be monthly. Thus, scores will fall in the

range [−100, 100]. Also, equal weighting is applied to all elements and all Project IDs,

Application IDs, and System IDs.

6.1 QUALITY

The first step for dealing with the quality data is a quick analysis of the data. Table 17

provides some descriptive statistics for the quality data. Testing hours were not captured,

but they are optional, so the analysis can continue.

Column Min Max Median Mean Variance

Development Effort 0 26937 300 1637 18383464

Testing Effort NA NA NA NA NA

12All the raw data files are available at [82]

62

Column Min Max Median Mean Variance

SIT Defects 0 1106 1 45.86 24528

UAT Defects 0 277 0 10.28 1306

PROD Defects 0 1216 5 51.5 20311

985 obs. from 23 Application IDs from 2007 to 2015

Table 17: QUALITY DATA DESCRIPTIVE STATISTICS

Notice, the data for quality goes from October 2007 to January 2015 and contains

985 observations. This is important because historical data can be used to create the

baseline quality function. All quality for the years 2007 through the end of 2013 will be

used as historical data for the purposes of creating the baseline quality function. Once the

historical data is separated, it results in 799 observations to be used for creating the

baseline quality function. Figure 10 shows scatterplots of PROD DFTS versus the

independent variables of DEV EFF, SIT DFTS, and UAT DFTS. It can be seen that some

correlations exist between the variables.

Figure 10: QUALITY DATA PLOTS: DEPENDENT VS. INDEPENDENT VARI-
ABLES

Figure 10 also shows the presence of a possible outlier with 1216 PROD DFTS.

63

That data point is dropped for the remaining analysis. At this point, a simple linear

regression model can be fit to the remaining 798 observations. At this point, no

transformations have been performed on the data. The linear regression model yields all 3

independent variables as significant and an overall R2 = .72. The source code and some

further analysis can be found in Appendix C.1. It appears to be a good fit and thus all

Application IDs will have the same baseline quality function. Therefore, f does not need

a subscript, and f can be seen below.

f = 5.92 + 0.035 ·DEV EFF − 0.36 · SIT DFTS + 1.05 · UAT DFTS

Now that f has been determined, the quality scores for each application can be

calculated for all the months beyond 2013. Appendix C.3 provides the necessary R code

to perform the calculations. Figure 11 shows the quality scores for 2014 and beyond. As

can be seen, the scores are greatly above expectations. That is an indication of improved

quality over historical performance.

Figure 11: CRI QUALITY SCORES

64

6.2 AVAILABILITY

For the availability data, some descriptive statistics can be seen in Table 18. The percent

uptime was previously calculated for this data so uptime, scheduled downtime, and

unscheduled downtime are not needed. Availability does not rely upon analysis of

historical data since a known upper and lower bound exist, 1 and 0 respectively.

The numbers in Table 18 indicate the values are very near 1. This is expected as

SDOs set SLA uptime values near 1, and even strive to meet an uptime of 1. An uptime of

1 means the system was available the entire time period. Thus numbers for uptime near 1

are highly desirable for an SDO expecting to score well for availability.

Column Min Max Median Mean Variance

Percent Uptime 0 1.0 1.0 0.9745 0.023

Expected Percent Uptime 0.93 1.0 0.98 0.9769 0.977

7522 obs. from 83 Application IDs from 2008 to 2015

Table 18: AVAILABILITY DATA DESCRIPTIVE STATISTICS

Since percent uptime has already been calculated and no historical analysis needs

to be performed, the calculation of the scores can be performed. R code to compute the

CRI availability scores can be found in Appendix C.4. Figure 12 displays the CRI

availability scores.

As can be seen in Figure 12 the scores are all above 70 which is good from a

performance standpoint, but it might be an indication that the expected uptimes could be

raised. If expected uptimes are consistently being exceeded, some consideration should be

given to increase the expected uptimes. This shows that organizations, or at least this

particular organization, are getting very good at keeping computer systems available.

Therefore, SLAs need to be adjusted to properly reflect the better performance.

65

Figure 12: CRI AVAILABILITY SCORES

6.3 SCHEDULE

Figure 19 displays some descriptive statistics for the schedule data. Since the data is

mostly dates, the descriptive statistics are limited, so extra values were added to the table

after removing four outliers. The new values in the table are: Schedule Duration

(Scheduled Finish - Scheduled Start), Difference (Actual Finish - Schedule Finish), and ∆

(Difference
Schedule Duration).

Column Min Max Median Mean

Scheduled Start 2013-06-23 2015-01-24 2014-03-17 2014-04-01

Scheduled Finish 2014-01-31 2015-01-25 2014-08-08 2014-08-02

Actual Start 2013-01-07 2014-10-17 2014-01-15 2014-02-10

Actual Finish 2014-02-20 2014-12-31 2014-08-31 2014-08-11

Schedule Duration 8 480 92 137.7

Difference -283 149 0.0 -8.919

∆ -4.75 0.6564 0.0 -0.2641

66

Column Min Max Median Mean

41 obs. from 40 Project IDs from mid 2013 to 2015

Table 19: SCHEDULE DATA DESCRIPTIVE STATISTICS

The first task with the schedule data is fitting the data to a distribution. Figure 13

shows a plot of the histogram of the ∆s and a Cauchy curve with location = 0.0 and scale

= 0.057. The Cauchy distribution appears to be a good fit.

Figure 13: SCHEDULE DATA HISTOGRAM WITH CAUCHY

Now that the distribution has been identified, the next step is determining the CDF

for the distribution. For Cauchy, the general CDF is given as follows.

CDF (x) =
1

π
arctan

x− x0

γ
+

1

2

where

• x0 is the location

67

• γ is the scale

Referencing Equation 4.1.4, the schedule formula for individual project IDs

becomes.

S4i =
200

π
arctan

(
∆i

0.057

)
The CRI schedule scores can be seen in Figure 14. These scores appear more

erratic than the other elements. This difference is due to the small number of releases

every month.

Figure 14: CRI SCHEDULE SCORES

6.4 REQUIREMENTS

The data for requirements are actually counts of story points instead of requirements. That

is because story points are a better choice for counting, since they are more uniform in size

than raw requirements. Also, the data contained 15 rows of data with a 0 for the number of

scheduled requirements. Those 15 rows were removed. Table 20 shows some descriptive

statistics for the remaining rows. A histogram for the data can be seen in Appendix C.6.1.

68

Column Min Max Median Mean Variance

Scheduled Requirements 0.5 1248 75.5 136.9 31243.89

Actual Requirements 0 1247 58 123.8 30844.75

ActualRequirements
ScheduledRequirements

0 1.2364 1.0 0.8515 0.05

461 obs. from 402 Project IDs from 2010 to 2015

Table 20: REQUIREMENTS DATA DESCRIPTIVE STATISTICS

The multiplier b is set to 1 because none of the historical performance ever

exceeded 25% more requirements than scheduled. Thus the upper bound is the number of

schedule requirements plus b = 1 times the number of scheduled requirements, for an

upper bound of twice the scheduled requirements.

Figure 15: CRI REQUIREMENTS SCORES

Figure 15 displays the CRI requirements scores. The scores are as expected

considering the histogram. Many of the projects meet the requirements exactly, and when

the requirements are not met, it is usually by a small number. Thus the scores are all 0 or

slightly below.

69

6.5 OVERALL

Now it is time to combine the scores for the overall CRI. Schedule does not have scores

for January 2014 or January 2015. Presumably, that is because the SDO within the large

financial institution does not schedule projects to be completed in January. Much of the

work would need to be completed over Christmas and New Year’s Day, but many workers

take personal time off of work during that time. Thus some organizations will schedule

appropriately. CRI is well suited to handle this problem. Just perform a weighted average

over the applicable elements. In this case study, the weights are all equal, so CRI is a

straight average.

Figure 16: CRI SCORES

Figure 16 displays the CRI scores as computed with the source code from

Appendix C.7. The scores are all above 0, so this financial institution has performed

consistently better than expected.

70

6.6 SENSITIVITY AND CORRELATION

To check the sensitivity of the CRI formula, the first method from Section 4.3 is used.

Small random values were added to the input values of the formulas. Then the new values

were used to calculated the element scores at the respective Application ID or Project ID

level. Finally the new CRI element scores were compared with the previous scores from

the unaltered data. The goal is to show small changes in the input values result in small

changes to the CRI element score. Figure 17 shows histograms of the new scores

compared with the previous scores. None of the formulas exhibit too much sensitivity as

the histograms all indicate most of the score changes are small, as seen by the high peak

of the histograms.

Figure 17: CRI SENSITIVITY ANALYSIS

The random values added were based on the standard deviations of the values in

the column. Quality and Requirements used the standard deviation of the matching

Application ID or Project ID. This slight difference is due to the wide variation of

standard deviations between Application IDs for Quality and Project IDs for

Requirements. Table 21 shows the columns that were altered for each element.

71

CRI Element Columns Altered

Quality Development Effort, SIT Defects, UAT Defects

Availability Percent Uptime

Schedule Schedule Finish - Actual Finish
Scheduled Finish - Scheduled Start

Requirements Actual Requirements Released

Table 21: CRI SENSITIVITY ANALYSIS

The columns were altered by adding random noise from a normal distribution with

mean 0 and standard deviation as explained above. The only exception to the normal

distribution was for the schedule element. The schedule element drew its noise from a

Cauchy distribution with location and scale as defined when determining the distribution

of the schedule data. That Cauchy distribution can be seen with the histogram in Figure

13.

Figure 18 shows a scatterplot matrix for the individual element scores. There is no

clear upper or downward trend in any of the graphs. Therefore, no correlation appears to

exist between any of the elements. The missing element, satisfaction, is the most likely

element to exhibit correlation. That is because lower scores on the other four elements

will likely result in decreased survey scores, which will result in lower satisfaction scores.

Anyhow, the four elements analyzed here remain independent.

7 FUTURE WORK

Due to the number of issues with surveys. One area of future work would be identifying a

general set of questions that would best fit CRI. This set would have to include the best

number of questions, order of questions and wording of questions. Therefore, any new

organization would not have to determine their own survey, but rather just use the

predetermined set of questions. It would even be advantageous to build a software system

72

Figure 18: SCATTERPLOT MATRIX OF CRI ELEMENT SCORES

to handle the survey distribution and collection. Ideally, the results would automatically

be inserted into the appropriate database tables for CRI scoring.

As shown in Table 16, CRI is currently not addressing two characteristics of the

balanced scorecard. If the SDO does not operate on a fixed budget, CRI could be

expanded to include another element for financial data. The challenge arises when

determining how to relate the SDO performance to finances. The most likely scenario

would be a method to either select or predict the expected software sales for a month.

Then every month create an CRI element score that reflects how much the expected sales

were exceeded or missed. The other missing balanced scorecard characteristic is learning

and growth. These are very difficult to quantitatively measure. In this case some possible

data points might be: hours of training, number of training courses, number of employees

receiving training, number of promotions, or another measure centered around training

courses and career growth. Again, once data exists, the problem becomes finding a

baseline and measuring with respect to that baseline.

Another area of future work is the expansion of the SDLC-AE to include more

73

artifacts of the SDLC. The more artifacts and processes that can be collected, the deeper

the understanding of the SDLC. All of the data collection combined with better software

analytics could lead to true data-driven software engineering. Data-driven software

engineering is the application of collecting and analyzing historical information about

software engineering artifacts in order to accurately predict the outcomes of software

engineering projects. This will lead to more informed decisions about software

engineering. Figure 19 shows an expansion of the previous SDLC-AE diagram. The new

elements are in the unshaded boxes, and they are not exhaustive. Data-driven software

engineering should not to be confused with data-driven programming, in which the

computer code describes the data instead of the sequence of operations [21].

Figure 19: SDLC ANALYTIC ENGINE EXPANSION

Currently, CRI provides a single method to evaluate past performance, but it does

not provide any guidance around making more informed future decisions. Some phases

are not properly tracked with the initial SDLC-AE and more data can be tracked for the

74

existing phases. Schedules for each of the individual phases of the SDLC need to be

tracked, not just the entire project. Teams need to know how much time is spent in design

versus testing. Consideration should also be given to the amount of time required to

generate proper testcases. These are just a couple of examples of expansions to the

SDLC-AE. These and other advancements could lead to greater insights about SDLC

phases that are struggling and need improvement. The SDLC-AE could be expanded to

have predictive capabilities.

8 CONCLUSION

There are many metrics that can be used to evaluate an SDO. The entire SDO needs to be

measured and analyzed properly, not just the development portion. Knowing which

metrics to use and what they all mean can be a daunting task. This dissertation identified

the Cumulative Result Indicator (CRI) which is a proposed solution to the difficulty of

measuring an SDO by creating a single number score for upper-level management to use

to quickly gauge performance.

The following have all been provided in this dissertation.

• CRI defines what five elements of an SDO should be measured. Result indicators

are included for quality, availability, satisfaction, schedule, and requirements.

• CRI defines what data needs to be collected to create a score for the five elements.

• CRI defines the formulas to create a score for the five elements.

• A process was outlined to generate the CRI score.

• An SDLC-AE was designed which includes a storage framework for the necessary

CRI data.

• A comparison with existing SDO evaluation techniques was presented.

75

• Finally, an example CRI score was calculated with data provided by an SDO

organization within a large financial institution.

Now SDOs have a technique to consistently measure performance over time. CRI

will help upper-level management identify the areas of the organization that need attention

and those that do not. CRI will save time required to evaluate performance since the result

is a single number.

76

APPENDIX

A DETAILED STEPS OF THE SDLC

The SDLC often contains more than the five basic steps of requirements, design,

implementation, testing, and deployment/maintenance. Those are the high-level phases,

but many steps are required to complete each phase. The following list provides a more

detailed list of what needs to be accomplished in the entire life cycle of software

development. These steps do not need to occur in a sequential fashion.

• Identify the Work/Task/Project

– Get Initial Idea

– Obtain Details

• Estimate

– Create an Estimate (What is included? What is the output?

days/dollars/hours/reqs)

– Obtain Approval

– Quit or Go Forward

• Document Requirements

– Identify the Requirements

– Detail the Requirements

• Design The Software

– Find System Integrations

– Identify Functional Specs

– Detail the Functional Specs

• Development of all the tasks in Design and Requirements

77

– Identify the Coding Tasks

– Write the Code/Develop the solution

– Write the Unit Tests

• Test

– Create Test Plans and Cases

– Run Test Plans and Cases

• Deployment

– Create Deployment Steps

– Run Deployment Steps

• Maintenance

– Capture Bugs

– Survey Users

• Start Again

B SDLC-AE SOURCE CODE

B.1 SQL CODE - DATA TABLES

1 −− c r e a t e t h e raw d a t a t a b l e s
2

3 CREATE TABLE QUALITY RAW (
4 QUALITY RAW ID RAW(1 6) NOT NULL PRIMARY KEY,
5 APPLICATION ID VARCHAR2(6 4) NOT NULL,
6 FREQ DATE DATE NOT NULL,
7 DEV EFFORT NUMBER(1 0 , 0) NOT NULL,
8 TEST EFFORT NUMBER(1 0 , 0) ,
9 SIT DEFECTS NUMBER(1 0 , 0) ,

10 UAT DEFECTS NUMBER(1 0 , 0) ,
11 PROD DEFECTS NUMBER(1 0 , 0) NOT NULL,
12 INSERT DATE DATE DEFAULT SYSDATE NOT NULL,
13 UPDATE DATE DATE DEFAULT SYSDATE NOT NULL
14) ;
15

16 CREATE TABLE AVAILABILITY RAW (

78

17 AVAILABILITY RAW ID RAW(1 6) NOT NULL PRIMARY KEY,
18 SERVICE ID VARCHAR2(6 4) NOT NULL,
19 FREQ DATE DATE NOT NULL,
20 UPTIME NUMBER(1 0 , 5) ,
21 SCHED DOWNTIME NUMBER(1 0 , 5) ,
22 UNSCHED DOWNTIME NUMBER(1 0 , 5) ,
23 PERCENT UPTIME NUMBER(1 0 , 5) NOT NULL,
24 EXPECT PERCENT UPTIME NUMBER(1 0 , 5) NOT NULL,
25 INSERT DATE DATE DEFAULT SYSDATE NOT NULL,
26 UPDATE DATE DATE DEFAULT SYSDATE NOT NULL
27) ;
28

29 CREATE TABLE SATISFACTION RAW (
30 SATISFACTION RAW ID RAW(1 6) NOT NULL PRIMARY KEY,
31 QUESTION ID VARCHAR2(6 4) NOT NULL,
32 FREQ DATE DATE NOT NULL,
33 QUESTION TEXT VARCHAR2(1 0 2 4) ,
34 RESPONDENT ID VARCHAR2(1 2 8) ,
35 RESPONSE NUMBER(5 , 0) NOT NULL,
36 RESPONSE DATE DATE,
37 APPLICATION ID VARCHAR2(6 4) ,
38 INSERT DATE DATE DEFAULT SYSDATE NOT NULL,
39 UPDATE DATE DATE DEFAULT SYSDATE NOT NULL
40) ;
41

42 CREATE TABLE SCHEDULE RAW (
43 SCHEDULE RAW ID RAW(1 6) NOT NULL PRIMARY KEY,
44 PROJECT ID VARCHAR2(6 4) ,
45 FREQ DATE DATE NOT NULL,
46 SCHED START DATE DATE NOT NULL,
47 SCHED FINISH DATE DATE NOT NULL,
48 ACTUAL START DATE DATE,
49 ACTUAL FINISH DATE DATE NOT NULL,
50 INSERT DATE DATE DEFAULT SYSDATE NOT NULL,
51 UPDATE DATE DATE DEFAULT SYSDATE NOT NULL
52) ;
53

54 CREATE TABLE REQUIREMENTS RAW (
55 REQUIREMENTS RAW ID RAW(1 6) NOT NULL PRIMARY KEY,
56 PROJECT ID VARCHAR2(6 4) ,
57 FREQ DATE DATE NOT NULL,
58 SCHED REQ NUMBER(1 0 , 0) NOT NULL,
59 ACTUAL REQ NUMBER(1 0 , 0) NOT NULL,
60 INSERT DATE DATE DEFAULT SYSDATE NOT NULL,
61 UPDATE DATE DATE DEFAULT SYSDATE NOT NULL
62) ;
63

79

64 −− remove t h e raw t a b l e s
65 −−DROP TABLE QUALITY RAW;
66 −−DROP TABLE AVAILABILITY RAW ;
67 −−DROP TABLE SATISFACTION RAW ;
68 −−DROP TABLE SCHEDULE RAW;
69 −−DROP TABLE REQUIREMENTS RAW;

B.2 SQL CODE - SCORE TABLES

1 −− C r e a t e t h e s c o r i n g t a b l e s
2

3 CREATE TABLE QUALITY SCORE (
4 QUALITY SCORE ID RAW(1 6) NOT NULL PRIMARY KEY,
5 APPLICATION ID VARCHAR2(6 4) NOT NULL,
6 FREQ DATE DATE NOT NULL,
7 SCORE NUMBER(1 0 , 5) NOT NULL,
8 ACTIVE CHAR DEFAULT ’Y’ NOT NULL,
9 INSERT DATE DATE DEFAULT SYSDATE NOT NULL,

10 UPDATE DATE DATE DEFAULT SYSDATE NOT NULL
11) ;
12

13 CREATE TABLE AVAILABILITY SCORE (
14 AVAILABILITY SCORE ID RAW(1 6) NOT NULL PRIMARY KEY,
15 SERVICE ID VARCHAR2(6 4) NOT NULL,
16 FREQ DATE DATE NOT NULL,
17 SCORE NUMBER(1 0 , 5) NOT NULL,
18 ACTIVE CHAR DEFAULT ’Y’ NOT NULL,
19 INSERT DATE DATE DEFAULT SYSDATE NOT NULL,
20 UPDATE DATE DATE DEFAULT SYSDATE NOT NULL
21) ;
22

23 CREATE TABLE SATISFACTION SCORE (
24 AVAILABILITY SCORE ID RAW(1 6) NOT NULL PRIMARY KEY,
25 QUESTION ID VARCHAR2(6 4) NOT NULL,
26 FREQ DATE DATE NOT NULL,
27 SCORE NUMBER(1 0 , 5) NOT NULL,
28 ACTIVE CHAR DEFAULT ’Y’ NOT NULL,
29 INSERT DATE DATE DEFAULT SYSDATE NOT NULL,
30 UPDATE DATE DATE DEFAULT SYSDATE NOT NULL
31) ;
32

33 CREATE TABLE SCHEDULE SCORE (
34 QUALITY SCORE ID RAW(1 6) NOT NULL PRIMARY KEY,
35 PROJECT ID VARCHAR2(6 4) NOT NULL,
36 FREQ DATE DATE NOT NULL,
37 SCORE NUMBER(1 0 , 5) NOT NULL,
38 ACTIVE CHAR DEFAULT ’Y’ NOT NULL,

80

39 INSERT DATE DATE DEFAULT SYSDATE NOT NULL,
40 UPDATE DATE DATE DEFAULT SYSDATE NOT NULL
41) ;
42

43 CREATE TABLE REQUIREMENTS SCORE (
44 REQUIREMENTS SCORE ID RAW(1 6) NOT NULL PRIMARY KEY,
45 PROJECT ID VARCHAR2(6 4) NOT NULL,
46 FREQ DATE DATE NOT NULL,
47 SCORE NUMBER(1 0 , 5) NOT NULL,
48 ACTIVE CHAR DEFAULT ’Y’ NOT NULL,
49 INSERT DATE DATE DEFAULT SYSDATE NOT NULL,
50 UPDATE DATE DATE DEFAULT SYSDATE NOT NULL
51) ;
52

53 −− remove t h e s c o r i n g t a b l e s
54 −−DROP TABLE QUALITY SCORE ;
55 −−DROP TABLE AVAILABILITY SCORE ;
56 −−DROP TABLE SATISFACTION SCORE ;
57 −−DROP TABLE SCHEDULE SCORE ;
58 −−DROP TABLE REQUIREMENTS SCORE ;

B.3 SQL CODE - FINAL SCORE TABLES

1 −− c r e a t e t h e ELEMENT t a b l e
2

3 CREATE TABLE ELEMENT (
4 ELEMENT ID NUMBER(1 0 , 0) NOT NULL PRIMARY KEY,
5 NAME VARCHAR2(6 4) NOT NULL,
6 DESCRIPTION VARCHAR(2 5 5) ,
7 INSERT DATE DATE DEFAULT SYSDATE NOT NULL,
8 UPDATE DATE DATE DEFAULT SYSDATE NOT NULL
9) ;

10

11 −− Add t h e CRI s c o r e t y p e s t o t h e t a b l e
12 INSERT INTO ELEMENT (ELEMENT ID ,NAME)
13 VALUES (1 , ’QUALITY ’) ;
14 INSERT INTO ELEMENT (ELEMENT ID ,NAME)
15 VALUES (2 , ’AVAILABILITY ’) ;
16 INSERT INTO ELEMENT (ELEMENT ID ,NAME)
17 VALUES (3 , ’SATISFACTION ’) ;
18 INSERT INTO ELEMENT (ELEMENT ID ,NAME)
19 VALUES (4 , ’SCHEDULE ’) ;
20 INSERT INTO ELEMENT (ELEMENT ID ,NAME)
21 VALUES (5 , ’REQUIREMENTS ’) ;
22 INSERT INTO ELEMENT (ELEMENT ID ,NAME)
23 VALUES (6 , ’OVERALL’) ;
24

81

25

26 −− c r e a t e t h e o v e r a l l s c o r e t a b l e
27 CREATE TABLE CRI SCORE (
28 CRI SCORE ID RAW(1 6) NOT NULL PRIMARY KEY,
29 ELEMENT ID NUMBER(1 0 , 0) NOT NULL REFERENCES ELEMENT(

ELEMENT ID) ,
30 FREQ DATE DATE NOT NULL,
31 SCORE NUMBER(1 0 , 5) NOT NULL,
32 ACTIVE CHAR DEFAULT ’Y’ NOT NULL,
33 INSERT DATE DATE DEFAULT SYSDATE NOT NULL,
34 UPDATE DATE DATE DEFAULT SYSDATE NOT NULL
35) ;
36

37 −− remove ELEMENT t a b l e
38 −−DROP TABLE CRI SCORE ;
39 −−DROP TABLE ELEMENT;

C CASE STUDY SOURCE CODE

A full set of the source code and applicable output is available at [81].

C.1 QUALITY HISTORICAL R CODE AND ANALYSIS

1 ### Load Raw Q u a l i t y Data
2 s e t A s (” c h a r a c t e r ” , ” myDate ” ,
3 f u n c t i o n (from) { as . Date (from , f o r m a t =”%m/%d /%Y”) })
4 s e t C l a s s (’ myDate ’)
5

6 q u a l i t y raw <− r e a d . csv (’ d a t a / q u a l i t y raw . csv ’ ,
7 c o l C l a s s e s =c (’ f a c t o r ’ ,
8 ’ myDate ’ ,
9 ’ numer ic ’ ,

10 ’ numer ic ’ ,
11 ’ numer ic ’ ,
12 ’ numer ic ’))
13

14 ### Get d e s c r i p t i v e s t a t i s t i c s
15 s t r (q u a l i t y raw)
16 summary (q u a l i t y raw)
17 v a r (q u a l i t y raw)
18

19 ### Find t h e B a s e l i n e Q u a l i t y F u n c t i o n
20 #### Use d a t a p r i o r t o 2014
21 h i s t o r y q u a l i t y raw =
22 q u a l i t y raw [q u a l i t y raw$MONTH DT
23 <= as . Date (’2013−12−31 ’) ,]

82

24

25 #### C r e a t e some p l o t s o f t h e h i s t o r i c a l q u a l i t y d a t a
26 p a r (mfrow=c (2 , 2))
27 p l o t (h i s t o r y q u a l i t y raw $DEV EFF ,
28 h i s t o r y q u a l i t y raw$PROD DFTS ,
29 x l a b = ’DEV EFF ’ , y l a b = ’PROD DFTS ’ , c o l = ’ s t e e l b l u e ’)
30 p l o t (h i s t o r y q u a l i t y raw $SIT DFTS ,
31 h i s t o r y q u a l i t y raw$PROD DFTS ,
32 x l a b = ’ SIT DFTS ’ , y l a b = ’PROD DFTS ’ , c o l = ’ s t e e l b l u e ’)
33 p l o t (h i s t o r y q u a l i t y raw $DEV EFF ,
34 h i s t o r y q u a l i t y raw$PROD DFTS ,
35 x l a b = ’UAT DFTS ’ , y l a b = ’PROD DFTS ’ , c o l = ’ s t e e l b l u e ’)
36

37

38 # #### Remove t h e o u t l i e r d a t a p o i n t w i th 1216 PROD DFTS
39 h i s t o r y q u a l i t y c l e a n = h i s t o r y q u a l i t y raw [h i s t o r y q u a l i t y raw$

PROD DFTS < 1 0 0 0 ,]
40

41 # #### c r e a t e t h e model a f t e r d r o p p i n g t h e
42 # #### d a t a p o i n t w i th ove r 1000 PROD DFTS
43 b a s e l i n e q u a l i t y f u n c t i o n = lm (PROD DFTS ˜ DEV EFF + SIT DFTS +

UAT DFTS ,
44 d a t a = h i s t o r y q u a l i t y c l e a n)
45 summary (b a s e l i n e q u a l i t y f u n c t i o n)
46

47 p a r (mfrow=c (1 , 2))
48 qqnorm (b a s e l i n e q u a l i t y f u n c t i o n $ r e s i d , c o l = ’ s t e e l b l u e ’)
49 q q l i n e (b a s e l i n e q u a l i t y f u n c t i o n $ r e s i d , c o l = ’ s t e e l b l u e ’)
50 summary (b a s e l i n e q u a l i t y f u n c t i o n) $ sigma
51 p l o t (b a s e l i n e q u a l i t y f u n c t i o n $ f i t t e d , abs (b a s e l i n e q u a l i t y

f u n c t i o n $ r e s i d) ,
52 c o l = ’ s t e e l b l u e ’ ,
53 main= ’ F i t t e d vs Res id ’ ,
54 x l a b = ’ F i t t e d ’ ,
55 y l a b = ’ A b s o l u t e Value o f R e s i d u a l s ’)
56 p a i r s (h i s t o r y q u a l i t y c l e a n [, c (’DEV EFF ’ , ’ SIT DFTS ’ , ’UAT DFTS ’)

] , c o l = ’ s t e e l b l u e ’)
57

58 #### s o u r c e code f o r r i d g e r e g r e s s i o n
59 #### d i d n o t y i e l d b e t t e r r e s u l t s
60 i n s t a l l . p a c k a g e s (’ r i d g e ’)
61 l i b r a r y (’ r i d g e ’)
62 rd = l i n e a r R i d g e (PROD DFTS ˜ DEV EFF
63 + SIT DFTS + UAT DFTS ,
64 d a t a = h i s t o r y q u a l i t y c l e a n , nPCs =1)
65 summary (rd)

83

The source code for the selected baseline quality function can be seen above. The output

for the linear model can be seen below.

1 C o e f f i c i e n t s :
2 E s t i m a t e S td . E r r o r t v a l u e Pr (>| t |)
3 (I n t e r c e p t) 5 .917433 2 .959339 2 .000 0 .0459 ∗
4 DEV EFF 0.034942 0 .001773 19 .709 < 2e−16 ∗∗∗
5 SIT DFTS −0.362998 0 .048068 −7.552 1 . 1 8 e−13 ∗∗∗
6 UAT DFTS 1.048225 0 .143276 7 .316 6 . 2 5 e−13 ∗∗∗
7 −−−
8 S i g n i f . codes : 0 ’∗∗∗ ’ 0 . 001 ’∗∗ ’ 0 . 0 1 ’∗ ’ 0 . 0 5 ’ . ’ 0 . 1 ’ ’ 1
9

10 R e s i d u a l s t a n d a r d e r r o r : 77 .43 on 794 d e g r e e s o f f reedom
11 M u l t i p l e R−s q u a r e d : 0 . 7 1 8 8 , A d j u s t e d R−s q u a r e d : 0 .7178
12 F− s t a t i s t i c : 676 .6 on 3 and 794 DF , p−v a l u e : < 2 . 2 e−16

Some diagnostic plots for the baseline quality function can be seen in Figure 20.

The normal probability plot, a.k.a. Q-Q Plot, shows the errors are not exactly normally

distributed, but the baseline quality function had good predictive power as shown by the

high R2. The fitted versus residuals plot indicates a lack of heteroscedasticity.

Figure 20: QUALITY DIAGNOSTIC PLOTS

Figure 21 shows the presence of some possible multicolinearity. As a result, ridge

regression was used to create a model, but the results were very similar to the original

84

baseline quality function. Therefore, ridge regression was not chosen.

Figure 21: QUALITY PAIRS PLOT OF INDEPENDENT VARIABLES

C.2 BAR CHART - R CODE

This is a code for generating a bar chart. It is used for reporting the scores of all the

elements.

1 l i b r a r y (’ g g p l o t 2 ’)
2 i n s t a l l . p a c k a g e s (’ zoo ’)
3 l i b r a r y (’ zoo ’)
4 l i b r a r y (’ s c a l e s ’)
5

6 b a r c h a r t <− f u n c t i o n (da t a , main= ’CRI S c o r e s ’ , x l a b = ’ Month / Year ’ ,
y l a b = ’CRI Score ’) {

7

8 g g p l o t (da t a , a e s (x= as . Date (MONTH DT) , y=SCORE, f i l l =SCORE)) +
9 geom b a r (s t a t = ” i d e n t i t y ”) +

10 geom t e x t (a e s (l a b e l = round (SCORE, 2) , v j u s t = i f e l s e (s i g n (
SCORE) >=0, − .4 , 1 . 4)) , s i z e =9) +

11 g u i d e s (f i l l =FALSE) +
12 yl im (−100 ,100) +

85

13 s c a l e x d a t e (l a b e l s = d a t e f o r m a t (”%m/%y ”) , b r e a k s = d a t e
b r e a k s (” month ”)) +

14 g g t i t l e (main) +
15 y l a b (y l a b) +
16 x l a b (x l a b)
17 }

C.3 QUALITY SCORES - R CODE

1 ### Now c a l c u l a t e t h e Q u a l i t y s c o r e s
2 #### Get d a t a f o r 2014 and newer
3 c u r r e n t q u a l i t y =
4 q u a l i t y raw [q u a l i t y raw$MONTH DT
5 > as . Date (’2013−12−31 ’) ,]
6

7 c u r r e n t q u a l i t y $PREDICTION =
8 p r e d i c t (b a s e l i n e q u a l i t y f u n c t i o n , newdata = c u r r e n t

q u a l i t y)
9 c u r r e n t q u a l i t y $SCORE = 100 ∗

10 i f e l s e (c u r r e n t q u a l i t y $PREDICTION
11 >= c u r r e n t q u a l i t y $PROD DFTS ,
12 (c u r r e n t q u a l i t y $PREDICTION
13 − c u r r e n t q u a l i t y $PROD DFTS)
14 / c u r r e n t q u a l i t y $PREDICTION ,
15 (c u r r e n t q u a l i t y $PREDICTION
16 − c u r r e n t q u a l i t y $PROD DFTS)
17 / (summary (b a s e l i n e q u a l i t y f u n c t i o n) $ sigma ˆ 2)
18)
19

20 q u a l s c o r e s = a g g r e g a t e (SCORE ˜ MONTH DT, c u r r e n t q u a l i t y , mean)
21 q u a l s c o r e s $MONTH DT = as . yearmon (q u a l s c o r e s $MONTH DT, ”%Y−%B”)
22 q u a l s c o r e s $SCORE = round (q u a l s c o r e s $SCORE, 2)
23 q u a l s c o r e s
24

25 b a r c h a r t (q u a l s c o r e s , main= ’CRI Q u a l i t y S c o r e s ’ , y l a b = ’CRI
Q u a l i t y Score ’ , x l a b = ’ Month / Year ’)

C.4 AVAILABILITY SCORES - R CODE

1 l i b r a r y (’ s e n s e ’)
2 s o u r c e (’ b a r c h a r t . R ’)
3

4 # Load Data
5 # −−−−−−−−−
6 #
7 # Load t h e A v a i l a b i l i t y d a t a .

86

8 s e t A s (” c h a r a c t e r ” , ” myDate ” ,
9 f u n c t i o n (from) { as . Date (from , f o r m a t =”%m/%d /%Y”) })

10 s e t C l a s s (’ myDate ’)
11

12 a v a i l raw <− r e a d . csv (’ d a t a / a v a i l a b i l i t y raw . csv ’ ,
13 c o l C l a s s e s =c (’ f a c t o r ’ ,
14 ’ myDate ’ ,
15 ’ numer ic ’ ,
16 ’ numer ic ’))
17

18 summary (a v a i l raw)
19 s t r (a v a i l raw)
20

21 # t r i m t o on ly 2014 and newer
22 a v a i l d a t a =
23 a v a i l d a t a [a v a i l d a t a $SLA DATE >= as . Date (’2014−01−01 ’)

,]
24

25 a v a i l d a t a $SCORE = i f e l s e (
26 a v a i l d a t a $ACTUAL <= a v a i l d a t a $EXPECTED,
27 (a v a i l d a t a $ACTUAL − a v a i l d a t a $EXPECTED) / a v a i l d a t a $EXPECTED,
28 (a v a i l d a t a $ACTUAL − a v a i l d a t a $EXPECTED) / (1 − a v a i l d a t a $

EXPECTED)
29)
30

31 a v a i l s c o r e s = a g g r e g a t e (SCORE ˜ SLA DATE, a v a i l da t a , mean)
32 a v a i l s c o r e s $SLA DATE = as . yearmon (a v a i l s c o r e s $SLA DATE, ”%Y−%B”

)
33 a v a i l s c o r e s $SCORE = round (100 ∗ a v a i l s c o r e s $SCORE, 2)
34

35 b a r c h a r t (a v a i l s c o r e s , main= ’CRI A v a i l a b i l i t y S c o r e s ’ ,
36 y l a b = ’CRI Q u a l i t y Score ’ , x l a b = ’ Month / Year ’)

C.5 SCHEDULE SCORES - R CODE

1 s o u r c e (’ b a r c h a r t . R ’)
2

3 ## Load t h e S c h e d u l e d a t a .
4 s e t A s (” c h a r a c t e r ” , ” myDate ” , f u n c t i o n (from) { as . Date (from , f o r m a t =

”%m/%d /%Y”) })
5 s e t C l a s s (’ myDate ’)
6

7 s c h e d u l e raw <− r e a d . csv (’ d a t a / s c h e d u l e raw . csv ’ ,
8 c o l C l a s s e s =c (’ f a c t o r ’ ,
9 ’ myDate ’ ,

10 ’ myDate ’ ,
11 ’ myDate ’ ,

87

12 ’ myDate ’ ,
13 ’ myDate ’))
14 summary (s c h e d u l e raw)
15 s t r (s c h e d u l e raw)
16

17 #### Clean up d a t a by removing a l l rows wi th
18 #### s c h e d u l e s t a r t , s c h e d u l e end , and a c t u a l end
19 c l e a n sched d a t a = s c h e d u l e raw [! i s . na (s c h e d u l e raw $ACTUAL

FINISH) & ! i s . na (s c h e d u l e raw$SCHED START) & ! i s . na (s c h e d u l e
raw$SCHED FINISH) ,]

20

21 #### Find t h e e s t i m a t e d d u r a t i o n ,
22 #### and t h e d e l t a from t h e e s t i m a t e d f i n i s h
23 #### and p e r c e n t
24 c l e a n sched d a t a $EST DUR = as . numer ic (c l e a n sched d a t a $SCHED

FINISH − c l e a n sched d a t a $SCHED START+1)
25 c l e a n sched d a t a $DELTA = as . numer ic (c l e a n sched d a t a $SCHED FINISH

− c l e a n sched d a t a $ACTUAL FINISH)
26 c l e a n sched d a t a $PERCENT DELTA = c l e a n sched d a t a $DELTA/ c l e a n

sched d a t a $EST DUR
27

28 #### Remove some of t h e o u t l i e r d a t a
29 c l e a n sched d a t a = c l e a n sched d a t a [abs (c l e a n sched d a t a $PERCENT

DELTA) < 20 ,]
30 summary (c l e a n sched d a t a)
31 s t r (c l e a n sched d a t a)
32

33 ### F i t a D i s t r i b u t i o n t o t h e d a t a
34

35 l o c a t i o n = median (c l e a n sched d a t a $PERCENT DELTA)
36 s c a l e = IQR (c l e a n sched d a t a $PERCENT DELTA) / 2
37 c (l o c a t i o n , s c a l e)
38 h = h i s t (c l e a n sched d a t a $PERCENT DELTA, b r e a k s = 70 , prob =TRUE,

y l im =c (0 , 6) , main= ’ His togram of S c h e d u l e Data ’)
39 x= seq (−5 ,5 , l e n g t h =200)
40 c u r v e (dcauchy (x , l o c a t i o n , s c a l e) ,
41 c o l =” d a r k b l u e ” , lwd =2 , add=TRUE)
42

43 ### Now f i n d t h e CRI s c o r e s
44 sched d a t a = c l e a n sched d a t a
45 sched d a t a $SCORE = (200 / p i) ∗ a t a n (sched d a t a $PERCENT DELTA / s c a l e)
46 sched d a t a $MONTH DT = as . yearmon (sched d a t a $ACTUAL FINISH , ”%Y−%B

”)
47 sched s c o r e s = a g g r e g a t e (SCORE ˜ MONTH DT, sched da ta , mean)
48 sched s c o r e s
49

88

50 b a r c h a r t (s ched s c o r e s , main= ’CRI S c h e d u l e S c o r e s ’ , y l a b = ’CRI
S c h e d u l e Score ’)

C.6 REQUIREMENTS SCORES - R CODE

C.6.1 REQUIREMENTS HISTOGRAM

Figure 22 shows a histogram of the data for requirements. The histogram is based upon

the fraction, ScheduledRequirements
ActualRequirements

. The values where the fraction equals one have been left

out of the histogram. So, the histogram show only the data that did not deliver exactly on

the number of requirements. Rarely are more requirements actually delivered than what

was scheduled. On the opposite side, the histogram bars shrink as they approach zero

indicating that it is more common to miss a few requirements than all the requirements.

Figure 22: REQUIREMENTS DATA HISTOGRAM (ACTUAL/SCHEDULED)

C.6.2 REQUIREMENTS R CODE

1 l i b r a r y (’ s e n s e ’)

89

2 s o u r c e (’ b a r c h a r t . R ’)
3

4 ### Now r e a d i n t h e r e q u i r e m e n t s d a t a
5 r e q u i r e m e n t s raw = r e a d . csv (’ d a t a / r e q u i r e m e n t s raw . csv ’ ,
6 c o l C l a s s e s =c (’ f a c t o r ’ ,
7 ’ Date ’ ,
8 ’ numer ic ’ ,
9 ’ numer ic ’))

10

11 # #### remove rows where COMPLETED and SCHEDULED a r e bo th 0
12 r e q u i r e m e n t s c l e a n = r e q u i r e m e n t s raw [r e q u i r e m e n t s raw $SCHEDULED

! = 0 ,]
13

14 r e q u i r e m e n t s c l e a n $DIFF = r e q u i r e m e n t s c l e a n $COMPLETED/
r e q u i r e m e n t s c l e a n $SCHEDULED

15 summary (r e q u i r e m e n t s c l e a n)
16 s t r (r e q u i r e m e n t s c l e a n)
17 v a r (r e q u i r e m e n t s c l e a n $SCHEDULED)
18 v a r (r e q u i r e m e n t s c l e a n $COMPLETED)
19 v a r (r e q u i r e m e n t s c l e a n $DIFF)
20

21 h i s t (r e q u i r e m e n t s c l e a n [r e q u i r e m e n t s c l e a n $DIFF ! = 1 ,] $DIFF)
22

23 # #### Now c a l c u l a t e t h e r e q u i r e m e n t s CRI s c o r e
24 # #### b u t on ly f o r y e a r 2014 and 2015
25 c u r r e n t r e q u i r e m e n t s = r e q u i r e m e n t s c l e a n [r e q u i r e m e n t s c l e a n $

MONTH DT
26 > as . Date (’2013−12−31 ’) ,]
27 c u r r e n t r e q u i r e m e n t s $MONTH DT = as . yearmon (as . Date (c u r r e n t

r e q u i r e m e n t s $MONTH DT) , ”%Y−%B”)
28 c u r r e n t r e q u i r e m e n t s $SCORE = 100∗ (c u r r e n t r e q u i r e m e n t s $COMPLETED−

c u r r e n t r e q u i r e m e n t s $SCHEDULED) / c u r r e n t r e q u i r e m e n t s $SCHEDULED
29

30 r e q s c o r e s = a g g r e g a t e (SCORE ˜ MONTH DT, c u r r e n t r e q u i r e m e n t s ,
mean)

31 r e q s c o r e s $SCORE = round (r e q s c o r e s $SCORE, 2)
32 r e q s c o r e s
33

34 b a r c h a r t (r e q s c o r e s , main= ’CRI R e q u i r e m e n t s S c o r e s ’ , y l a b = ’CRI
R e q u i r e m e n t s Score ’ , x l a b = ’ Month / Year ’)

C.7 OVERALL SCORES - R CODE

1

2 ### Combine t h e s c o r e s
3 # o v e r a l l
4

90

5 # o v e r a l l
6

7 f u l l = merge (x = q u a l s c o r e s , y = a v a i l s c o r e s , by = ”MONTH DT” ,
a l l = TRUE, s u f f i x e s =c (’ QUAL’ , ’ AVAIL ’))

8 f u l l = merge (x = f u l l , y = sched s c o r e s , by = ”MONTH DT” , a l l =
TRUE, s u f f i x e s = ’ SCHED ’)

9 co lnames (f u l l) [4] = ’SCORE SCHED ’
10 f u l l = merge (x = f u l l , y = r e q s c o r e s , by = ”MONTH DT” , a l l =

TRUE, s u f f i x e s =c (’ ’ , ’ REQ ’))
11 co lnames (f u l l) [5] = ’SCORE REQ ’
12

13 f u l l $SCORE = a p p l y (f u l l [, seq (2 , 5)] , 1 ,
14 f u n c t i o n (x) {sum (x , na . rm=TRUE) / sum (! i s . na (x)) }

)
15

16 b a r c h a r t (f u l l)

D ADDITIONAL SDLC DATA NEEDS

This appendix describes some additional SDLC attributes that could be tracked to help

improve estimation. The SDLC-AE could be expanded to include the following.

D.1 ESTIMATION

The following are additional data points that could be tracked for project estimation.

• Change to database structure

• Modify database data

• Create a new database, number of new databases

• Server configuration changes required

• New servers required

• Number of people involved

• Number of (sub)systems involved

• Estimation date

• Number of days allowed

91

• List of other attributes

• Number of screens involved

• Actual values (hours, days, dollars)

• Estimated values

– Estimated development hours: The number of development hours estimated

for a project, this is just developer hours

– Estimated documentation hours: The number of documentation hours

estimated for a project

– Estimated testing hours: The number of testing hours estimated for a project

– Estimated deployment hours: The number of estimated hours required to

deploy the project

D.2 REQUIREMENTS

The following are additional data points that could be tracked for the requirements phase

of an SDLC project.

• Title

• Description

• Author

• Project

• Date

• Comments

– Date

– Comment text

– Author

92

D.3 DEVELOPMENT

The following are additional data points that could be tracked for the development phase

of an SDLC project.

• Project

• Release

• List of files

• Author

• Date started

• Completion date

• Number of unit tests

• Lines of code

• Percentage of automated test coverage

• Others

D.4 TESTING

The following are additional data points that could be tracked during, before, and after the

testing phase of an SDLC project.

• Project

• Release

• Title

• description]

• Author]

• Date started

• Date executed

• Status (pending, pass, fail)

93

• Comments

– Date

– Comment text

– Author

D.5 IMPLEMENTATION

The following are additional data points that could be tracked for the implementation of a

project.

• Project

• Release

• date Entered

• Date Scheduled

• Date Executed

• Ordering/Prerequisites

• Comments

– date

– Comment text

– Author

D.6 MAINTENANCE (DEFECTS)

The following are additional data points that could be tracked for maintenance of a

project.

• Project

• Release

• Description

94

• Date Entered

• Date fixed

• Comments

– Date

– Comment text

– Author

95

REFERENCES

[1] M. Andreessen, “Why software is eating the world,” The Wall Street Journal,

Aug. 2011. [Online]. Available: http://goo.gl/MXk4TS.

[2] Ž. Antolić, “An example of using key performance indicators for software

development process efficiency evaluation,” in MIPRO 2008: 31st

International Convention on Information and Communication Technology,

Electronics and Microelectronics, May 26-30, 2008, Opatija Croatia.

Microelectronics, electronics and electronic technologies, MEET.. Grid and

visualization systems, GVS, P. Biljanović, K. Skala, and G. . V. Systems, Eds.,

vol. 1, MIPRO, 2008, isbn: 9789532330366.

[3] S. Ashmore and K. Runyan, Introduction to Agile Methods, 1st.

Addison-Wesley Professional, 2014, isbn: 032192956X, 9780321929563.

[4] B. Aulet, “Disciplined entrepreneurship: 24 steps to a successful startup,” in.

2013, ch. STEP 19: Calculate the Cost of Customer Acquisition (COCA),

isbn: 1-118692-28-4.

[5] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou, “Evaluating

static analysis defect warnings on production software,” in Proceedings of the

7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software

Tools and Engineering, ser. PASTE ’07, New York, NY, USA: ACM, 2007,

pp. 1–8, isbn: 978-1-59593-595-3. doi: 10.1145/1251535.1251536.

[6] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,

M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,

B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and

D. Thomas. (2001). Manifesto for agile software development, [Online].

Available: http://www.agilemanifesto.org/.

[7] H. D. Benington, “Production of large computer programs,” in Proceedings of

the 9th International Conference on Software Engineering, ser. ICSE ’87, Los

Alamitos, CA, USA: IEEE Computer Society Press, 1987, pp. 299–310, isbn:

0-89791-216-0.

[8] B. W. Boehm, Software Engineering Economics, 1st. Upper Saddle River, NJ,

USA: Prentice Hall PTR, 1981, isbn: 0138221227.

[9] B. W. Boehm, “A spiral model of software development and enhancement,”

SIGSOFT Software Engineering Notes, vol. 11, no. 4, pp. 14–24, Aug. 1986,

issn: 0163-5948. doi: 10.1145/12944.12948.

[10] B. W. Boehm, “A spiral model of software development and enhancement,”

Computer, vol. 21, no. 5, pp. 61–72, May 1988, issn: 0018-9162. doi:

10.1109/2.59.

http://goo.gl/MXk4TS
http://dx.doi.org/10.1145/1251535.1251536
http://www.agilemanifesto.org/
http://dx.doi.org/10.1145/12944.12948
http://dx.doi.org/10.1109/2.59

96

[11] B. W. Boehm and V. R. Basili, “Software defect reduction top 10 list,”

Computer, vol. 34, no. 1, pp. 135–137, Jan. 2001, issn: 0018-9162. doi:

10.1109/2.962984.

[12] B. W. Boehm and W. J. Hansen, “Spiral development: Experience, principles,

and refinements,” Carnegie Mellon Software Engineering Institute, Tech. Rep.,

Jul. 2000, Special Report CMU/SEI-2000-SR-008.

[13] R. P. Buse and T. Zimmermann, “Analytics for software development,” in

Proceedings of the FSE/SDP Workshop on Future of Software Engineering

Research, ser. FoSER ’10, New York, NY, USA: ACM, 2010, pp. 77–80, isbn:

978-1-4503-0427-6. doi: 10.1145/1882362.1882379. [Online]. Available:

http://research.microsoft.com/pubs/136301/MSR-TR-2010-111.pdf.

[14] R. P. Buse and T. Zimmermann, “Information needs for software development

analytics,” in Proceedings of the 34th International Conference on Software

Engineering, ser. ICSE ’12, Piscataway, NJ, USA: IEEE Press, 2012,

pp. 987–996, isbn: 978-1-4673-1067-3.

[15] R. Charette, “Why software fails [software failure],” IEEE Spectrum, vol. 42,

no. 9, pp. 42–49, Sep. 2005, issn: 0018-9235. doi:

10.1109/MSPEC.2005.1502528.

[16] CMMI Product Team, “Cmmi for development, version 1.3,” Carnegie Mellon

Software Engineering Institute (SEI), http://goo.gl/MBESq0, Tech. Rep.,

Nov. 2010.

[17] T. Copeland, PMD Applied: An Easy-to-use Guide for Developers, ser. An

easy-to-use guide for developers. Centennial Books, 2005, isbn:

9780976221418.

[18] E. Cowles and E. Nelson, An Introduction to Survey Research, 1st. New York,

NY, USA: Business Expert Press, Jan. 2015, isbn: 978-1-60649-818-7.

[19] J. Czerwonka, N. Nagappan, W. Schulte, and B. Murphy, “Codemine:

Building a software development data analytics platform at microsoft,” IEEE

Software, vol. 30, no. 4, pp. 64–71, 2013, issn: 0740-7459. doi:

10.1109/MS.2013.68.

[20] A. Damodaran. (Feb. 2015). Statistical distributions, New York University,

[Online]. Available: http://goo.gl/Jp7mtn.

[21] (Mar. 2015). Data-driven programming, Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Data-driven programming.

[22] T. DeMarco, “Software engineering: An idea whose time has come and gone?”

IEEE Software, vol. 26, no. 4, pp. 96–96, Jul. 2009, issn: 0740-7459. doi:

10.1109/MS.2009.101.

http://dx.doi.org/10.1109/2.962984
http://dx.doi.org/10.1145/1882362.1882379
http://research.microsoft.com/pubs/136301/MSR-TR-2010-111.pdf
http://dx.doi.org/10.1109/MSPEC.2005.1502528
http://goo.gl/MBESq0
http://dx.doi.org/10.1109/MS.2013.68
http://goo.gl/Jp7mtn
http://en.wikipedia.org/wiki/Data-driven_programming
http://dx.doi.org/10.1109/MS.2009.101

97

[23] A. B. Downey, Think Stats: Probability and Statistics for Programmers.

O’Reilly Media, 2011, p. 138. [Online]. Available:

http://greenteapress.com/thinkstats/.

[24] D. J. Dubois and G. Tamburrelli, “Understanding gamification mechanisms

for software development,” in Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering, ACM, 2013, pp. 659–662.

[25] C. Ebert, T. Liedtke, and E. Baisch, “Improving reliability of large software

systems,” Annals of Software Engineering, vol. 8, no. 1-4, pp. 3–51, Aug. 1999,

issn: 1022-7091. doi: 10.1023/A:1018971212809.

[26] K. E. Emam and A. G. Koru, “A replicated survey of it software project

failures,” IEEE Software, vol. 25, no. 5, pp. 84–90, Sep. 2008, issn: 0740-7459.

doi: 10.1109/MS.2008.107.

[27] M. Faizan, M. N. A. Khan, and S. Ulhaq, “Contemporary trends in defect

prevention: A survey report,” International Journal of Modern Education and

Computer Science (IJMECS), vol. 4, no. 3, p. 14, 2012.

[28] W. A. Florac and A. D. Carleton, Measuring the Software Process. Boston:

Addison Wesley, 1999.

[29] C. Giardino, M. Unterkalmsteiner, N. Paternoster, T. Gorschek, and

P. Abrahamsson, “What do we know about software development in

startups?” IEEE Software, vol. 31, no. 5, pp. 28–32, Sep. 2014, issn:

0740-7459. doi: 10.1109/MS.2014.129.

[30] S. Godfrey. (Oct. 2011). Characteristics of capability maturity model,

[Online]. Available: http://goo.gl/MpNx9b.

[31] A. L. Goel and M. Shin, “Software engineering data analysis techniques

(tutorial),” in Proceedings of the 19th International Conference on Software

Engineering, ser. ICSE ’97, New York, NY, USA: ACM, 1997, pp. 667–668,

isbn: 0-89791-914-9. doi: 10.1145/253228.253816.

[32] M. Halkidi, D. Spinellis, G. Tsatsaronis, and M. Vazirgiannis, “Data mining in

software engineering,” Intelligent Data Analysis, vol. 15, no. 3, pp. 413–441,

Aug. 2011, issn: 1088-467X.

[33] M. H. Halstead, Elements of Software Science (Operating and Programming

Systems Series). New York, NY, USA: Elsevier Science Inc., 1977, isbn:

0444002057.

[34] A. E. Hassan, A. Hindle, P. Runeson, M. Shepperd, P. Devanbu, and S. Kim,

“Roundtable: What’s next in software analytics,” IEEE Software, vol. 30, no.

4, pp. 53–56, Jul. 2013, issn: 0740-7459. doi: 10.1109/MS.2013.85.

http://greenteapress.com/thinkstats/
http://dx.doi.org/10.1023/A:1018971212809
http://dx.doi.org/10.1109/MS.2008.107
http://dx.doi.org/10.1109/MS.2014.129
http://goo.gl/MpNx9b
http://dx.doi.org/10.1145/253228.253816
http://dx.doi.org/10.1109/MS.2013.85

98

[35] A. E. Hassan and T. Xie, “Software intelligence: The future of mining software

engineering data,” in Proceedings of the FSE/SDP Workshop on Future of

Software Engineering Research, ser. FoSER ’10, New York, NY, USA: ACM,

2010, pp. 161–166, isbn: 978-1-4503-0427-6. doi: 10.1145/1882362.1882397.

[36] C. Hibbs, S. Jewett, and M. Sullivan, The Art of Lean Software Development:

A Practical and Incremental Approach, 1st. O’Reilly Media, Inc., 2009, isbn:

0596517319, 9780596517311.

[37] D. Hubbard, How to Measure Anything: Finding the Value of Intangibles in

Business, 2nd. Wiley, 2010, isbn: 9780470625699.

[38] E. A. Ichu, The Role of Quality Assurance in Software Development Projects:

Software Project Failures and Business Performance. Germany: LAP Lambert

Academic Publishing, 2012, isbn: 3659169609, 9783659169601.

[39] “Ieee standard glossary of software engineering terminology,” IEEE Std

610.12-1990, pp. 1–84, Dec. 1990. doi: 10.1109/IEEESTD.1990.101064.

[40] A. Iqbal, O. Ureche, M. Hausenblas, and G. Tummarello, “Ld2sd: Linked data

driven software development,” in In 21st International Conference on

Software Engineering and Knowledge Engineering (SEKE 09, 2009.

[41] I. Jacobson and E. Seidewitz, “A new software engineering,” Communications

of the ACM, vol. 57, no. 12, pp. 49–54, Nov. 2014, issn: 0001-0782. doi:

10.1145/2677034.

[42] A. Jain and S. Angadi, “Gamifiying software development process,” Infosys

Labs Briefings, vol. 11, no. 3, pp. 21–28, 2013, http://goo.gl/T9PB96 accessed

01-Jan-2015.

[43] R. W. Jensen, “Improving software development productivity: Effective

leadership and quantitative methods in software management,” in, 1st. Upper

Saddle River, NJ, USA: Prentice Hall Press, 2014, ch. 15. Function Point

Sizing, isbn: 0133562670, 9780133562675.

[44] C. Jones, Applied Software Measurement: Assuring Productivity and Quality,

2nd. Hightstown, NJ, USA: McGraw-Hill, Inc., 1997, isbn: 0-07-032826-9.

[45] C. Jones, Software Engineering Best Practices, 1st ed. New York, NY, USA:

McGraw-Hill, Inc., 2010, isbn: 007162161X, 9780071621618.

[46] C. Jones. (Jun. 2012). Scoring and evaluating software methods, practices, and

results. Namecook Analytics Blog, [Online]. Available: http://goo.gl/3i06pN.

[47] C. Jones, “The technical and social history of software engineering,” in, 1st.

Addison-Wesley Professional, 2013, ch. 10, isbn: 0321903420, 9780321903426.

[48] C. Jones. (Jul. 2013). Why “cost per defect” is harmful for software quality.

Namecook Analytics Blog, [Online]. Available: http://goo.gl/QUsvlw.

http://dx.doi.org/10.1145/1882362.1882397
http://dx.doi.org/10.1109/IEEESTD.1990.101064
http://dx.doi.org/10.1145/2677034
http://goo.gl/T9PB96
http://goo.gl/3i06pN
http://goo.gl/QUsvlw

99

[49] M. Jørgensen, “A strong focus on low price when selecting software providers

increases the likelihood of failure in software outsourcing projects,” in

Proceedings of the 17th International Conference on Evaluation and

Assessment in Software Engineering, ser. EASE ’13, New York, NY, USA:

ACM, 2013, pp. 220–227, isbn: 978-1-4503-1848-8. doi:

10.1145/2460999.2461033.

[50] M. Jorgensen, “What we do and don’t know about software development

effort estimation,” IEEE Software, vol. 31, no. 2, pp. 37–40, Mar. 2014, issn:

0740-7459. doi: 10.1109/MS.2014.49.

[51] C. Kaner and W. P. Bond, “Software engineering metrics: What do they

measure and how do we know?” In METRICS 2004, IEEE CS Press, 2004.

[52] R. S. Kaplan and D. P. Norton, “The balanced scorecard: Measures that drive

performance,” Harvard Business Review, pp. 71–80, Jan. 1992.

[53] R. S. Kaplan and D. P. Norton, “Using the balanced scorecard as a strategic

management system,” Harvard Business Review, Jul. 2007. [Online].

Available: http://goo.gl/4v871V.

[54] M. Klubeck, Metrics: How to Improve Key Business Results, 1st. Berkely, CA,

USA: Apress, 2011, isbn: 1430237260, 9781430237266.

[55] M. Kutner, C. Nachtsheim, and J. Neter, Applied Linear Regression Models,

4th, ser. The McGraw-Hill/Irwin Series Operations and Decision Sciences.

McGraw-Hill Higher Education, 2003, isbn: 9780072955675.

[56] T. O. A. Lehtinen, M. V. Mäntylä, J. Vanhanen, J. Itkonen, and C. Lassenius,

“Perceived causes of software project failures - an analysis of their

relationships,” Journal Information and Software Technology, vol. 56, no. 6,

pp. 623–643, Jun. 2014, issn: 0950-5849. doi: 10.1016/j.infsof.2014.01.015.

[57] E. Letier and C. Fitzgerald, “Measure what counts: An evaluation pattern for

software data analysis,” in 2013 1st International Workshop on Data Analysis

Patterns in Software Engineering (DAPSE), IEEE, 2013, pp. 20–22.

[58] S. Maheshwari and D. C. Jain, “A comparative analysis of different types of

models in software development life cycle,” International Journal of Advanced

Research in Computer Science and Software Engineering, vol. 2, no. 5,

pp. 285–290, May 2012, issn: 2277-128X.

[59] A. Marcus and T. Menzies, “Software is data too,” in Proceedings of the

FSE/SDP Workshop on Future of Software Engineering Research, ser. FoSER

’10, New York, NY, USA: ACM, 2010, pp. 229–232, isbn: 978-1-4503-0427-6.

doi: 10.1145/1882362.1882410.

http://dx.doi.org/10.1145/2460999.2461033
http://dx.doi.org/10.1109/MS.2014.49
http://goo.gl/4v871V
http://dx.doi.org/10.1016/j.infsof.2014.01.015
http://dx.doi.org/10.1145/1882362.1882410

100

[60] T. McCabe, “A complexity measure,” IEEE Transactions on Software

Engineering, vol. SE-2, no. 4, pp. 308–320, Dec. 1976, issn: 0098-5589. doi:

10.1109/TSE.1976.233837.

[61] T. Menzies, B. Caglayan, Z. He, E. Kocaguneli, J. Krall, F. Peters, and

B. Turhan. (Jun. 2012). The promise repository of empirical software

engineering data, [Online]. Available: http://promisedata.googlecode.com.

[62] T. Menzies and T. Zimmermann, “Goldfish bowl panel: Software development

analytics,” in 2012 34th International Conference on Software Engineering

(ICSE), Jun. 2012, pp. 1032–1033.

[63] J. P. Miguel, D. Mauricio, and G. Rodŕıguez, “A review of software quality

models for the evaluation of software products,” International Journal of

Software Engineering & Applications (IJSEA), vol. 5, no. 6, pp. 31–54, Nov.

2014, http://www.airccse.org/journal/ijsea/papers/5614ijsea03.pdf.

[64] A. B. M. Moniruzzaman and S. A. Hossain, “Comparative study on agile

software development methodologies,” Global Journal of Computer Science

and Technology, vol. 13, no. 7, 2013. [Online]. Available:

http://arxiv.org/abs/1307.3356.

[65] P. Naur and B. Randell, Eds., Software Engineering: Report of a Conference

Sponsored by the NATO Science Committee, Garmisch, Germany, 7-11 Oct.

1968, Brussels, Scientific Affairs Division, NATO. 1969,

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF.

[66] J. Olson, Data Quality: The Accuracy Dimension, ser. The Morgan Kaufmann

Series in Data Management Systems. Elsevier Science, 2003, isbn:

9780080503691.

[67] D. Parmenter, Key Performance Indicators: Developing, implementing, and

using winning KPIs. Hoboken, New Jersey: John Wiley and Sons, Inc., 2010.

[68] L. H. Putnam and W. Myers, Five Core Metrics: The Intelligence Behind

Successful Software Management. New York, New York: Addison-Wesley

Professional, 2013.

[69] R. Ramler and K. Wolfmaier, “Economic perspectives in test automation:

Balancing automated and manual testing with opportunity cost,” in

Proceedings of the 2006 International Workshop on Automation of Software

Test, ser. AST ’06, New York, NY, USA: ACM, 2006, pp. 85–91, isbn:

1-59593-408-1. doi: 10.1145/1138929.1138946.

[70] J. Raynus, Software Process Improvement with CMM. Norwood, MA, USA:

Artech House, Inc., 1999, isbn: 0-89006-644-2. [Online]. Available:

http://goo.gl/Jc7Krf.

http://dx.doi.org/10.1109/TSE.1976.233837
http://promisedata.googlecode.com
http://www.airccse.org/journal/ijsea/papers/5614ijsea03.pdf
http://arxiv.org/abs/1307.3356
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://dx.doi.org/10.1145/1138929.1138946
http://goo.gl/Jc7Krf

101

[71] J. Rost and R. Glass, “The dark side of software engineering: Evil on

computing projects,” in. Wiley, 2011, ch. 2 Lying, isbn: 9780470922873.

[72] W. W. Royce, “Managing the development of large software systems:

Concepts and techniques,” in Proceedings of the 9th International Conference

on Software Engineering, ser. ICSE ’87, Los Alamitos, CA, USA: IEEE

Computer Society Press, 1987, pp. 328–338, isbn: 0-89791-216-0.

[73] V. Rubin, C. W. Günther, W. van der Aalst, E. Kindler, B. F. Van Dongen,

and W. Schäfer, “Process mining framework for software processes,” in

Proceedings of the 2007 International Conference on Software Process, ser.

ICSP’07, Berlin, Heidelberg: Springer-Verlag, 2007, pp. 169–181, isbn:

978-3-540-72425-4.

[74] G. Ruhe and F. Gesellschaft, “Knowledge discovery from software engineering

data: Rough set analysis and its interaction with goal-oriented measurement,”

English, in Principles of Data Mining and Knowledge Discovery, ser. Lecture

Notes in Computer Science, J. Komorowski and J. Zytkow, Eds., vol. 1263,

Springer Berlin Heidelberg, 1997, pp. 167–177, isbn: 978-3-540-63223-8. doi:

10.1007/3-540-63223-9 116.

[75] N. B. Ruparelia, “Software development lifecycle models,” SIGSOFT Softw.

Eng. Notes, vol. 35, no. 3, pp. 8–13, May 2010, issn: 0163-5948. doi:

10.1145/1764810.1764814.

[76] A. Saltelli, S. Tarantola, and F. Campolongo, “Sensitivity analysis as an

ingredient of modeling,” Statistical Science, vol. 15, no. 4, pp. 377–395, 2000.

[Online]. Available: http://projecteuclid.org/euclid.ss/1009213004.

[77] G. Snijkers, G. Haraldsen, J. Jones, and D. Willimack, Designing and

Conducting Business Surveys, 2nd ed., ser. Wiley Series in Survey

Methodology. John Wiley & Sons, 2013, isbn: 9781118447918.

[78] W. B. Snipes, “Evaluating developer responses to gamification of software

development practices.,” Master’s thesis, North Carolina State University,

2013. [Online]. Available:

http://repository.lib.ncsu.edu/ir/handle/1840.16/9199.

[79] I. Sommerville, Software Engineering, 6th ed. Harlow, England:

Addison-Wesley, 2001.

[80] S. L. Spraragen, “The challenges in creating tools for improving the software

development lifecycle,” in Proceedings of the 2005 Workshop on Human and

Social Factors of Software Engineering, ser. HSSE ’05, New York, NY, USA:

ACM, 2005, pp. 1–3, isbn: 1-59593-120-1. doi: 10.1145/1082983.1083118.

[81] R. Swanstrom. (Mar. 2015). Cri scores for dissertation, Sense, [Online].

Available: http://goo.gl/NuEZsf.

http://dx.doi.org/10.1007/3-540-63223-9_116
http://dx.doi.org/10.1145/1764810.1764814
http://projecteuclid.org/euclid.ss/1009213004
http://repository.lib.ncsu.edu/ir/handle/1840.16/9199
http://dx.doi.org/10.1145/1082983.1083118
http://goo.gl/NuEZsf

102

[82] R. Swanstrom. (Mar. 2015). Dissertation-scoring-sdo, Github, [Online].

Available: https://github.com/ryanswanstrom/dissertation-scoring-sdo.

[83] Q. Taylor and C. Giraud-Carrier, “Applications of data mining in software

engineering,” International Journal of Data Analysis Techniques and

Strategies, vol. 2, no. 3, pp. 243–257, Jul. 2010, issn: 1755-8050.

[84] D. Tosi, L. Lavazza, S. Morasca, and D. Taibi, “On the definition of dynamic

software measures,” in Proceedings of the ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement, ser. ESEM

’12, New York, NY, USA: ACM, 2012, pp. 39–48, isbn: 978-1-4503-1056-7.

doi: 10.1145/2372251.2372259.

[85] F. F. Tsui, Essentials of software engineering, 3rd. Jones & Bartlett

Publishers, 2013.

[86] W. van der Aalst, Process Mining : Discovery, Conformance and

Enhancement of Business Processes. Heidelberg: Springer, 2011.

[87] W. van der Aalst, “Process mining: Overview and opportunities,” ACM

Transactions on Management Information Systems, vol. 3, no. 2, 7:1–7:17, Jul.

2012, issn: 2158-656X. doi: 10.1145/2229156.2229157.

[88] M. van Genuchten, R. Mans, H. Reijers, and D. Wismeijer, “Is your upgrade

worth it? process mining can tell,” IEEE Software, vol. 31, no. 5, pp. 94–100,

Sep. 2014, issn: 0740-7459. doi: 10.1109/MS.2014.20.

[89] K. Werbach, “(re)defining gamification: A process approach,” English, in

Persuasive Technology, ser. Lecture Notes in Computer Science, A. Spagnolli,

L. Chittaro, and L. Gamberini, Eds., vol. 8462, Springer International

Publishing, 2014, pp. 266–272, isbn: 978-3-319-07126-8. doi:

10.1007/978-3-319-07127-5 23.

[90] V. Winter, C. Reinke, and J. Guerrero, “Sextant: A tool to specify and

visualize software metrics for java source-code,” in Emerging Trends in

Software Metrics (WETSoM), 2013 4th International Workshop on, May

2013, pp. 49–55. doi: 10.1109/WETSoM.2013.6619336.

[91] T. Xie, S. Thummalapenta, D. Lo, and C. Liu, “Data mining for software

engineering,” Computer, vol. 42, no. 8, pp. 55–62, 2009, issn: 0018-9162. doi:

10.1109/MC.2009.256.

[92] D. Zhang, Y. Dang, J.-G. Lou, S. Han, H. Zhang, and T. Xie, “Software

analytics as a learning case in practice: Approaches and experiences,” in

Proceedings of the International Workshop on Machine Learning Technologies

in Software Engineering, ser. MALETS ’11, New York, NY, USA: ACM, 2011,

pp. 55–58, isbn: 978-1-4503-1022-2. doi: 10.1145/2070821.2070829.

https://github.com/ryanswanstrom/dissertation-scoring-sdo
http://dx.doi.org/10.1145/2372251.2372259
http://dx.doi.org/10.1145/2229156.2229157
http://dx.doi.org/10.1109/MS.2014.20
http://dx.doi.org/10.1007/978-3-319-07127-5_23
http://dx.doi.org/10.1109/WETSoM.2013.6619336
http://dx.doi.org/10.1109/MC.2009.256
http://dx.doi.org/10.1145/2070821.2070829

103

[93] D. Zhang, S. Han, Y. Dang, J.-G. Lou, H. Zhang, and T. Xie, “Software

analytics in practice,” IEEE Software, vol. 30, no. 5, pp. 30–37, Sep. 2013,

issn: 0740-7459. doi: 10.1109/MS.2013.94.

http://dx.doi.org/10.1109/MS.2013.94

	ABBREVIATIONS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	INTRODUCTION
	OVERVIEW
	TERMINOLOGY
	CMMI
	PREVIOUS SOFTWARE EVALUATION WORK
	ORGANIZATION OF THE WORK

	A SOFTWARE DEVELOPMENT ORGANIZATION
	WHAT IS SOFTWARE?
	THE SOFTWARE DEVELOPMENT LIFE CYCLE
	WHAT IS SOFTWARE ENGINEERING?

	MEASURING AN SDO
	METRICS
	INDICATORS
	BALANCED SCORECARD
	PROJECT MANAGEMENT MEASUREMENT
	A SIMPLER MEASUREMENT

	CUMULATIVE RESULT INDICATOR (CRI)
	ELEMENTS OF CRI
	CORRELATIONS IN CRI
	SENSITIVITY OF CRI
	CRI COMPARED

	SDLC ANALYTIC ENGINE
	DATABASE STRUCTURE

	CASE STUDY: SCORING AN SDO OF A LARGE FINANCIAL INSTITUTION
	QUALITY
	AVAILABILITY
	SCHEDULE
	REQUIREMENTS
	OVERALL
	SENSITIVITY AND CORRELATION

	FUTURE WORK
	CONCLUSION
	APPENDIX
	DETAILED STEPS OF THE SDLC
	SDLC-AE SOURCE CODE
	SQL CODE - DATA TABLES
	SQL CODE - SCORE TABLES
	SQL CODE - FINAL SCORE TABLES

	CASE STUDY SOURCE CODE
	QUALITY HISTORICAL R CODE AND ANALYSIS
	BAR CHART - R CODE
	QUALITY SCORES - R CODE
	AVAILABILITY SCORES - R CODE
	SCHEDULE SCORES - R CODE
	REQUIREMENTS SCORES - R CODE
	OVERALL SCORES - R CODE

	ADDITIONAL SDLC DATA NEEDS
	ESTIMATION
	REQUIREMENTS
	DEVELOPMENT
	TESTING
	IMPLEMENTATION
	MAINTENANCE (DEFECTS)

	REFERENCES

