How to Kickstart Your Data Science Career

This is a guest post from Michael Li of The Data Incubator. The The Data Incubator runs a free eight week data science fellowship to help transition their Fellows from Academia to Industry. This post runs through some of the toolsets you’ll need to know to kickstart your Data Science Career.

If you’re an aspiring data scientist but still processing your data in Excel, you might want to upgrade your toolset.  Why?  Firstly, while advanced features like Excel Pivot tables can do a lot, they don’t offer nearly the flexibility, control, and power of tools like SQL, or their functional equivalents in Python (Pandas) or R (Dataframes).  Also, Excel has low size limits, making it suitable for “small data”, not  “big data.”

In this blog entry we’ll talk about SQL.  This should cover your “medium data” needs, which we’ll define as the next level of data where the rows do not fit the 1 million row restriction in Excel.  SQL stores data in tables, which you can think of as a spreadsheet layout but with more structure.  Each row represents a specific record, (e.g. an employee at your company) and each column of a table corresponds to an attribute (e.g. name, department id, salary).  Critically, each column must be of the same “type”.  Here is a sample of the table Employees:

EmployeeId Name StartYear Salary DepartmentId
1 Bob 2001 10.5 10
2 Sally 2004 20 10
3 Alice 2005 25 20
4 Fred 2004 12.5 20

SQL has many keywords which compose its query language but the ones most relevant to data scientists are SELECT, WHERE, GROUP BY, JOIN.  We’ll go through these each individually.

SELECT

SELECT is the foundational keyword in SQL. SELECT can also filter on columns.  For example

SELECT Name, StartYear FROM Employees

returns

Name StartYear
Bob 2001
Sally 2004
Alice 2005
Fred 2004

WHERE

The WHERE clause filters the rows. For example

SELECT * FROM Employees WHERE StartYear=2004

returns

EmployeeId Name StartYear Salary DepartmentId
2 Sally 2004 20 10
4 Fred 2004 12.5 20

GROUP BY

Next, the GROUP BY clause allows for combining rows using different functions like COUNT (count) and AVG (average). For example,

SELECT StartYear, COUNT(*) as Num, AVG(Salary) as AvgSalary
FROM EMPLOYEES
GROUP BY StartYear

returns

StartYear Num AvgSalary
2001 1 10.5
2004 2 16.25
2005 1 25

JOIN

Finally, the JOIN clause allows us to join in other tables. For example, assume we have a table called Departments:

DepartmentId DepartmentName
10 Sales
20 Engineering

We could use JOIN to combine the Employees and Departments tables based ON the DepartmentId fields:

SELECT Employees.Name AS EmpName, Departments.DepartmentName AS DepName
FROM Employees JOIN Departments
ON Employees.DepartmentId = Departments.DepartmentId;

The results might look like:

EmpName DepName
Bob Sales
Sally Sales
Alice Engineering
Fred Engineering

We’ve ignored a lot of details about joins: e.g. there are actually (at least) 4 types of joins, but hopefully this gives you a good picture.

Conclusion and Further Reading

With these basic commands, you can get a lot of basic data processing done.  Don’t forget, that you can nest queries and create really complicated joins.  It’s a lot more powerful than Excel, and gives you much better control of your data.  Of course, there’s a lot more to SQL than what we’ve mentioned and this is only intended to wet your appetite and give you a taste of what you’re missing.

And when you’re ready to step it up from “medium data” to “big data”, you should apply for a fellowship at The Data Incubator where we work with current-generation data-processing technologies like MapReduce and Spark!


Posted

in

,

by

Comments

2 responses to “How to Kickstart Your Data Science Career”

  1. vivek kaliyar Avatar

    I have been preparing for data science certification for a while . Any idea about emc2 data science certification ?
    is it better than cloudera certification ?

    1. Ryan Swanstrom Avatar

      I am not sure which certification is better. I will throw another certification into the mix because I work at Microsoft, https://academy.microsoft.com/en-us/professional-program/data-science
      The Microsoft program might take longer, but it is less expensive and it covers tons of material. Everything from basic stats to DBs and machine learning.

      In any case, I don’t think you can go wrong with any certification as long as you learn something new.

Leave a Reply